

UPDATES ON MUON TRACKS SELECTION FOR TRACK DECONVOLUTION

Federico Francesco Scamporlino

Goal:

• Improve angular resolution and measure z coordinate using a neural network capable of performing a deconvolution using a stack of PSFs;

What is needed:

- Measure the point spread function at different z using muons tagged by scintillators;
- Create a dataset to fine-tune the neural network and extract the z coordinate.

- The images containing muons in the desired range of z are tagged using waveforms from the PMTs inside GIN.
- To remove electron showers, do avoid tagging images where the z-width of the track is larger than the width of the scintillators (7, 1*cm*).

Signal width is larger than the width of the scintillators.

Image is tagged as muon.

- Images tagged as containing muons have many clusters and only one of these is the muon of interest.
- The solution to this problem is to implement cuts on the reco variables to select only the muon clusters.

Image 41

1000

500

1500

2000

x [px]

Counts

200

150

100

50

 With these cuts, most of the selected clusters are indeed muons, whose tracks can be used to extract the point
spread functions.

- 4 tracks grouped together as a single cluster
- Alas the reco has a tendency to group large tracks together hence the actual muons do not appear as clusters and long electron tracks are selected instead.

PSF extraction

 The PSFs can be evaluated directly from the muon tracks by looking for the smallest clusters, ideally containing a single electron.

 We look for these small clusters by plotting the longitudinal histogram of the muon and look for the clusters that are both small and have low energy deposit.

PSF extraction (WIP)

• The light of these subclusters along the muon longitudinal profile is calculated and using the energy calibration figures, converted into *eV*:

 $1eV \approx 3,5 \ counts$

• Another useful figure can be obtained by plotting the width of these subclusters with energies below 4W = 140eV shows a noticeable peak at around 16px ($800\mu m$).

Small bump around 2W suggests the energy threshold is above 35eV, meaning the minimum number of primary electrons we can see is 2.

PSF extraction (WIP)

- One possible way to test whether we can actually see clusters containing only a single electron is to slice again the longitudinal tracks of the muons, this time in equal slices of 15px (the hypothesised with of clusters containing 2 to 4 electrons);
- In principle we would see a series of peaks corresponding to polya functions, whose widths are connected to gain fluctuations, centered around the energies corresponding to multiple integers of *W*;
- If the gain fluctuations are too large, the single peaks cannot be distinguished and all we see is a continuous distribution resembling a Landau.

Expression of the polya distribution, m is the shape parameter that determines the variance of the polya while G is connected to the gain.

$$p(n) = a_0 \frac{m^m}{\Gamma(m)} \left(\frac{n}{G}\right)^{m-1} e^{-\frac{mn}{G}} \qquad n = \frac{E}{W} \text{ is the expected number of primary electrons}$$

that have been amplified.

• For the fit we used the fact that, assuming the gain fluctuations of k electrons are indipendent processes, the distribution of the sum of two polyas with the same gain and shape parameter, is again a polya but with parameters: m' = km, G' = kG.

PSF extraction (WIP)

LINF Istituto Nazionale di Fisica Nucleare

- In GIN it seems that the gain fluctuations are indeed too large to discern the single peaks.
- By fitting the polyas and constraining the amplitudes to follow the fitted landau distribution, two distinct fits have been obtained:

THANK YOU

backup slides

The idea to construct the data ground truth data is:

- Find smallest clusters (with few electrons, ideally no more than 3);
- Slice the longitudinal profiles and get the transversal profile for each slice;
- The integral of these sliced clusters will be an multiple of the smallest.
- From this we can infer how many electrons are in that cluster.
- Finally use the longitudinal and transversal slices to produce points (electrons) for the simulated track.