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Gamma-ray sources in the Solar system: the Moon and the Sun

* Moon and Sun among the brightest sources in the sky
- Detected by Fermi LAT in its early years of
operation

* Gamma rays are secondary products of inelastic
collisions of galactic cosmic-ray nuclei (CRs) with
matter (e.g. in the atmosphere of the Sun or at the
surface of the Moon).

* Gamma rays are also originated by bremsstrahlung of
CR electrons

* The Sun has an additional leptonic component, due
to inverse Compton scattering of CR electrons on
solar photons

* Inflaring state, the Sun can be an active source of
gamma-ray photons up to few GeVs due to local
acceleration of electrons and protons




Observations of the Moon and the Sun as moving sources

* Moon and Sun are moving sources in the Sky
- ~13°/day for the Moon, ~1° /day for the Sun

* ROIs for the analysis of these sources must follow their
drift [1][3]
» Typical selection criteria of good-time intervals include:

* Fermi-LAT in standard science operation and outside
the SSA

* ROI cone outside Earth’s limb
* ROI observed with small off-axis angles by LAT
« ROI far from the galactic plane
* Far from any bright source in Fermi catalogs
(Flux = 10~7ph/cm?s)
* Background estimation using the ON-OFF method:

* “Fake Moon” or “Fake Sun” ROIs that move in the
sky along the same path of real sources, but
-> With a time shift to ensure large enough
separation from real source ROI

* Same data selection applied to the “real source”
and “fake source” ROIs
- Same background is sampled
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F. Loparco, Fermi Symposium 2024
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Modeling of the Moon with Monte Carlo simulations

Modeling carried out with a MC simulation
approach [1] that can be extended to the Sun and
other Solar System bodies
Main inputs:
1. Composition and density of the lunar regolith
2. Model of hadronic interactions (embedded in
the FLUKA code)

Primary p and He generated with isotropic &
uniform distribution over the lunar surface.
Energy range: 10 MeV/n to 10TeV/n

The gamma-ray yields from primary species i:
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Flux of y-rays calculated by folding the yields with
intensities of p and He measured by AMS [2]:
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Where R = radius of the Moon, d = distance Moon-LAT



The two-component solar y-ray emission
observed by Fermi-LAT

Components of solar y-ray emission distinguished by
Fermi-LAT in 2011 analysis [3] :

«Disk»:
* Due to CR nuclei inelastic interactions
with solar atmosphere
* Modeled as a point source
* Unexpectedly bright
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From [3]: ApJ 734 116 (2011)




Rel. variation of disk

Further observational features of component vs time
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https://arxiv.org/abs/2505.06348

Modeling of the solar disk emission

* The solar gamma-ray emission can be investigated with a
MC simulation setup that follows similar principles as the one
for the Moon [5], based on the FLUKA code

* Key aspects:
1. Detailed description of composition

2.

3.
4.

+ density/temperature/pressure profiles
of the interior of the Sun

Realistic modeling of magnetic fields in the vicinity of the
sun (PFSS from solar magnetograms for r < 2.5R)

Parker magnetic field model in the interplanetary space

CR intensities measured at 1 AU rescaled to account for
transport in the B-field (HelioProp software)

* This simulation setup shows:

The fundamental role of the solar magnetic field

It reduces the gamma-ray fluxat E < 1GeV by partially
blocking low energy CRs, before they reach the Sun

Enhances flux at higher energy due to an increase of the
average length of the trajectories in the solar atmosphere

Simulated disk spectrum

10°%

E D(E) (GeV cm® s
g

3

(L

and Fermi-LAT data

This work: CR 2111
—Total —Protons
==Helium ==FElectrons

—&Tang et al. PRD 98

—8-Abdo et al. ApJ 734
Seckel et al. ApJ 382

B=0

N

B=0
10-‘2 11 IIIIII| 11 IIIIII| 1 IIIIIII| 1 IIIIIII| 1 IIIIIIII L1 Li 1 1iitn
10 107 10% 107 1 10 107 10°
E, (GeV)
10°° |
This work: CR 2111 -8 Abdo ot al. ApJ 724
—=Total —=Protons —&Tang et al. PRD 02
) Seckel et al. ApJ 38]
10 —Helium  —Electrons —g
s B+0

E ®(E) (GeV cm”s7)

(PFSS)

From [5]: PRD 101, 083011 (2020)



Modeling of the Solar IC emission

The solar B-field is also expected to affect the IC component:
* Electrons move along curved trajectories
* Their length determines the interaction probability with sunlight

A custom 3D MC simulation has already been developed [6],
considering anisotropic IC-scattering and assuming a simplified
geometry for the Sun. The Parker model was used for the EM-fields
- IC spectral shape is affected and and the gamma-ray flux
enhanced

This study can be extended, including realistic models for the solar
atmosphere and complex B-field configurations, derived from
measurements of the field on the photosphere.
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Conclusions

* During its early years of operation, Fermi-LAT has observed the Moon and the quiet Sun as
bright sources of gamma rays

* The Moon’s observations are in agreement with predictions obtained by folding the measured
intensities of CR protons and He nuclei with gamma-ray yields derived from Monte Carlo
simulations

* While the basic mechanism of the solar disk gamma-ray emission is understood, several of its
features remain unexplained

* The extended component also shows unexpected variability over time

* Detailed simulation studies of gamma-ray emission from the Sun in presence of magnetic
fields may give new insights into the aspects that are not yet fully understood
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