

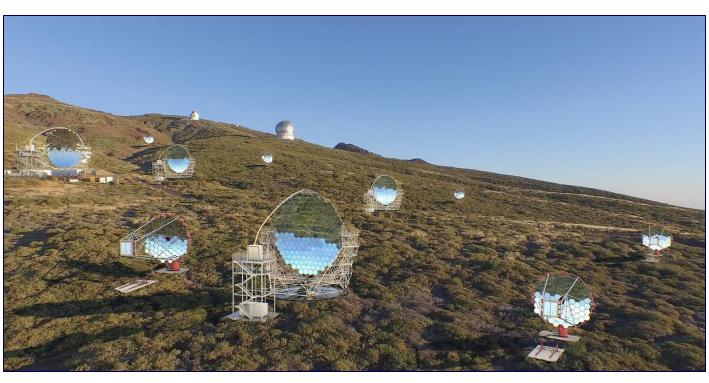
CTAO LST–1 Observations Of Magnetar SGR 1935+2154: Deep Limits On Sub-second Bursts And Persistent TeV Emission

Advances in Modeling HE Astrophysical Source

July 4th 2025

Gabriele Panebianco (INAF-OAS Bologna) On behalf of the CTAO-LST SGR 1935+2154 team: A. López-Oramas, A. Simongini, S. Mereghetti, A. Bulgarelli, P. Bordas, A. Carosi, A. Di Piano, I. Jiménez Martínez, R. López-Coto, T. Hassan, N. Parmiggiani, C. Vignali, R. Zanin

The CTAO and LST-1


The CTAO

- Cherenkov Telescope Array Observatory
- > 60 telescopes, sensitivity ×10 improvement
- Full-sky Coverage from 2 sites (La Palma, Chile)
- Wide Field of View (>5°)
- Broad Energy Range (20 GeV 300 TeV)
- Fast repointing time (< 30s)

The LST-1

- Large-Sized Telescope Prototype (LST-1)
- Active since 2019
- Energy Range: 20 GeV 10 TeV

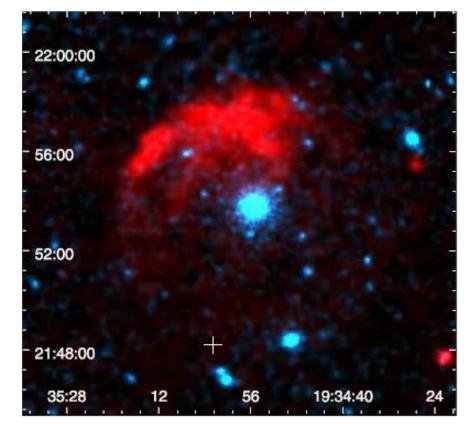
Artistic Rendering of CTAO North site (La Palma), with LST-1 on far left

Magnetars

Magnetars

- Subclass of Isolated Neutron Stars (NSs)
 - High Magnetic Field $B \sim 10^{14-15} G$, Twisted Magnetosphere
 - \circ Large Rotation Period $\sim 1 12 s$
- ≈ 30 in Galaxy and Magellanic Clouds
- Powered by **B** Decay: Persistent and Bursting emission

Bursting Emission


- Outburst periods ~ weeks (keV MeV)
- Short Bursts ~0.1 *s*, L~ $10^{36-43} erg s^{-1}$
 - **B** Stress cracks NS crust \rightarrow Hot plasma ejection
 - Cut-off Power Law / 2 Black Body
- Intermediate, Giant Flares (MGF) L $\sim 10^{44-47} erg \ s^{-1}$

Persistent Emission

- X-ray, pulsed emission
- Soft X-ray Thermal Component
 - Heating powered by **B** decay
 - Peak at ~0.5 keV
- Hard X-ray Power-Law Component
 - \circ Inner magnetosphere e^- scatter thermal photons
 - Multiple Resonant Cyclotron Scattering
- Cut-off ~1 *MeV* not observed
 - COMPTEL MeV Upper Limits $\sim 10^{-10} erg \ s^{-1} cm^{-2}$
 - \circ Fermi-Lat GeV Upper Limits $\sim 10^{-12} erg \ s^{-1} cm^{-2}$

SGR 1935+2154

- Galactic Magnetar in SNR G57.2+0.8 with SGR activity
- Discovered in 2014, many outburst periods
 - \circ Period ~ 3.24 s, Age ~ 3.6 kyr, Distance ~ 4.4 kpc
 - BB Temperature (0.47 ± 0.02) keV, PL index (1.8 ± 0.5)
- FRB 20200428D
 - Detected X-ray and Radio bursts simultaneously!
 - Magnetars can produce FRBs!
- Is there TeV emission in coincidence of SGR 1935 activity?
 - LST-1 Observations: 33 *h* in July, September 2021, June 2022
 - 9 simultaneous X-ray Bursts
 - Reconstruction adapted for real Observing Conditions

SNR G57.2+0.8 environment SGR 1935+2154 in the center THOR 1.4 GHz, XMM Newton (Zhou et al., 2020)

SGR 1935+2154

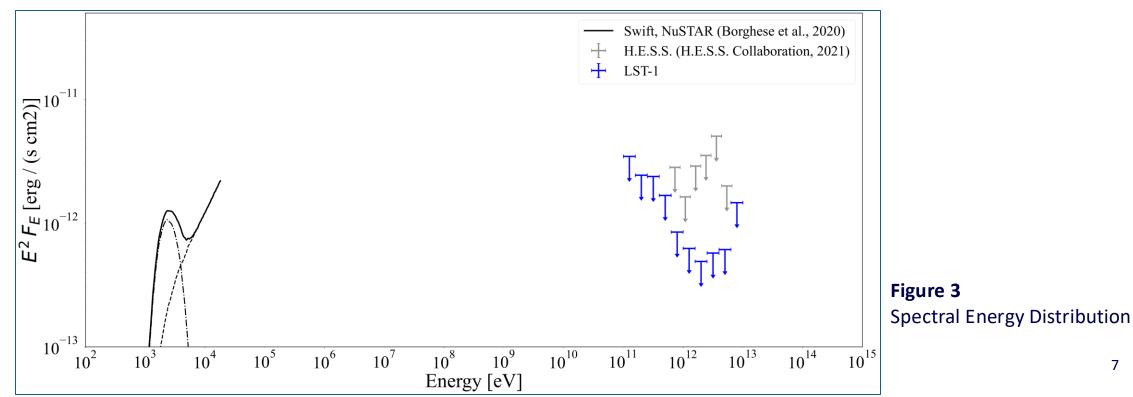
Persistent Emission

Persistent Emission

• Standard Analysis on 25h of good-quality observations: 2021 (July-Sept.), 2022 (June)

LST COLLABORATION

-2


- Standard Stacked Analysis (0.1 10 TeV) for Significance, Flux
- No detection overall (Figs. 1, 2) -> Upper Limits (ULs)
- Significance map 19200 Energy Range [0.10:10] TeV Significance = -0.95σ 19000 ON data 23°00' Background 18800 22°30' Declination 18600 Counts 00' Figure 1 18400 Stacked θ^2 21°30' 18200 18000 00' 17800 20°30' 17600 $19^{h}39^{m}$ 36^{m} 33^{m} 30^{m} Figure 2 0.000.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 θ^2 [deg²] Significance Map **Right Ascension**
- No nightly variability

Persistent Emission

- TeV ULs ~ X-ray flux •
 - LST-1 improves H.E.S.S. ULs (Index=-2.5, 95% CL) 0
- Agreement with Magnetar Models ۲
 - Emission break expected in MeV 0
 - Current MeV ULs $\sim 10^{-10} erg \ s^{-1} cm^{-2}$ 0
 - Current GeV ULs $\sim 10^{-12} erg \ s^{-1} cm^{-2}$ 0

- **Emission Detection of FRB Progenitors?**
 - PRSs likely powered by pulsar/magnetar in nebulae
 - FRB Progenitors might emit VHE γ -rays (PWNe or SNRs) 0
- Interesting targets for CTAO

SGR 1935+2154

Bursting Emission

Data Analysis

- Burst Analysis developed
 - Signal: a **0**. **1***s* Burst above a Poisson Background
 - New dataset obtained with optimized Cherenkov Cuts
- 9 X-ray Bursts simultaneous to Observations

Results

- No detection -> Bayesian Burst ULs [0.1 10] TeV
 - \circ Sensitivity $\approx 3.0 \cdot 10^{-8} \ ph \ s^{-1} cm^{-2}$
- Unbiased Burst Search: No detection
 - \circ Sensitivity $\approx 6.2 \cdot 10^{-8} \, ph \, s^{-1} cm^{-2}$

#	Time of Alert ISOT UTC	Instrument	LST-1 R_{BKG} s^{-1}	N ₅	N _{ON}	Flux UL $10^{-8}s^{-1}cm^{-2}$	Fluence UL 10 ⁻⁹ erg cm ⁻²	
1	2021-07-07 00:33:31.670	Fermi-GBM	0.81±0.02	4	0	2.01	1.50	
2	2021-09-10 23:40:34.460	Fermi-GBM	1.05±0.03	4	0	1.95	1.45	
3	2021-09-11 22:51:41.600	GECAM	0.95±0.03	4	0	2.03	1.51	
4	2021-09-11 23:55:45.872	NICER	1.01±0.03	4	0	1.94	1.45	T V
5	2021-09-12 00:34:37.450	GECAM	0.61±0.03	4	0	1.97	1.47	e
6	2021-09-12 00:45:49.400	GECAM	0.66±0.03	4	0	1.96	1.46	t
7	2021-09-12 22:16:36.200	GECAM	0.68±0.02	4	1	3.61	2.69	
8	2021-09-12 23:19:32.080	Fermi-GBM	1.04±0.03	4	0	2.02	1.51	
9	2021-09-13 00:27:25.200	GECAM	1.04±0.03	4	0	1.95	1.45	
	STACKED $\delta t = 0.9s$		0.87±0.04	8	1	0.30	0.20	

Table 1VHE ULs simultaneous toexternal alerts on a 0.1s

time scale.

LST COLLABORATION

Discussion

- TeV ULs $\sim 10^{-3}$ X-ray Flux
 - $\,\circ\,$ First X-TeV Magnetar Burst SED on 0.1s (Fig. 4)
- Agreement with Magnetar Models
 - No TeV emission from "regular" short bursts
- Magnetar systems more complex than SGR 1935+2154 may emit High-Energy Gamma Flashes (HEGF)

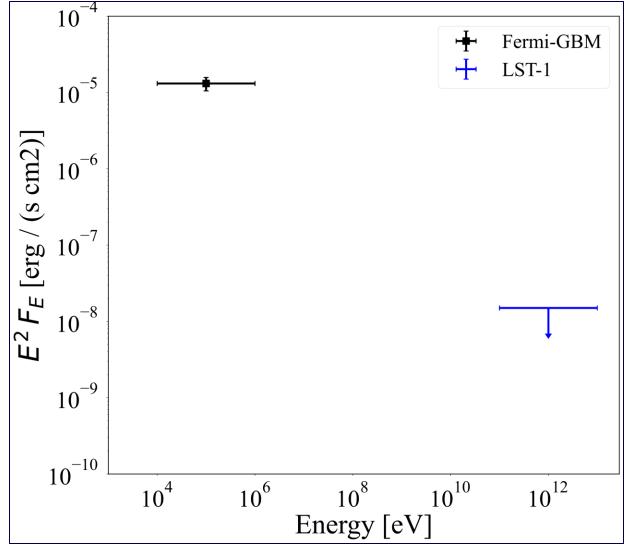


Figure 4. Burst #1 Spectral Energy Distribution

Discussion: FRBs

- Magnetar Burst + PWN can produce FRB + HEGF
- Murase, 2016: TeV Burst Fluence φ can constrain $E_{outflow}$
- SGR 1935+2154 example:

 $◦ φ_{UL} \sim 1.5 \cdot 10^{-9} erg cm^{-2} → E_{outflow} < 3.6 \cdot 10^{37} erg$

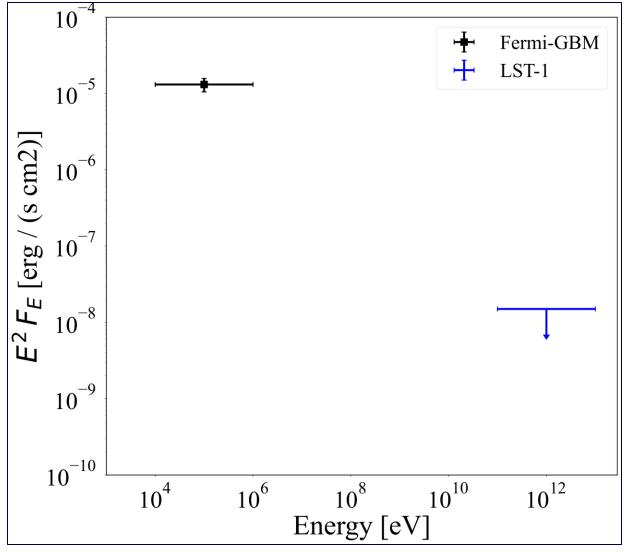


Figure 4. Burst #1 Spectral Energy Distribution

Discussion: Candidate MGF detected at GeV

- Ajello, 2021 detected MGF at GeV from Sculptor Galaxy
 - Flux $\Phi(> 0.1 \text{ GeV}) = (4.1 \pm 2.2) \cdot 10^{-6} s^{-1} cm^{-2}$
 - Distance d = 3.5 Mpc
 - \circ Power Law Index = -1.7 ± 0.3
- Scaled Flux: $\Phi(> 0.1 \, TeV) \approx 2 \cdot 10^{-3} s^{-1} cm^{-2}$, IF
 - Power Law Extends to TeV
 - Source is at $d = 4.4 \ kpc$
- LST-1 can detect a similar burst up to a few Mpc
- Caveats:
 - Observation conditions can degrade sensitivity
 - Spectral Model extension uncertain
 - Flare duration may be different

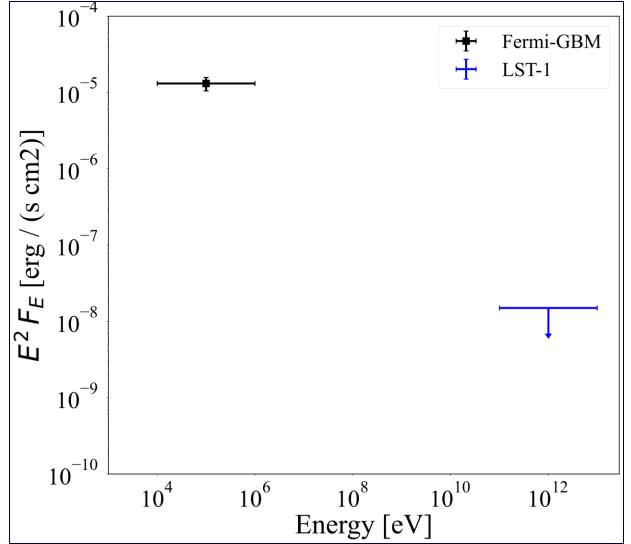


Figure 4. Burst #1 Spectral Energy Distribution

SGR 1935+2154

Conclusions

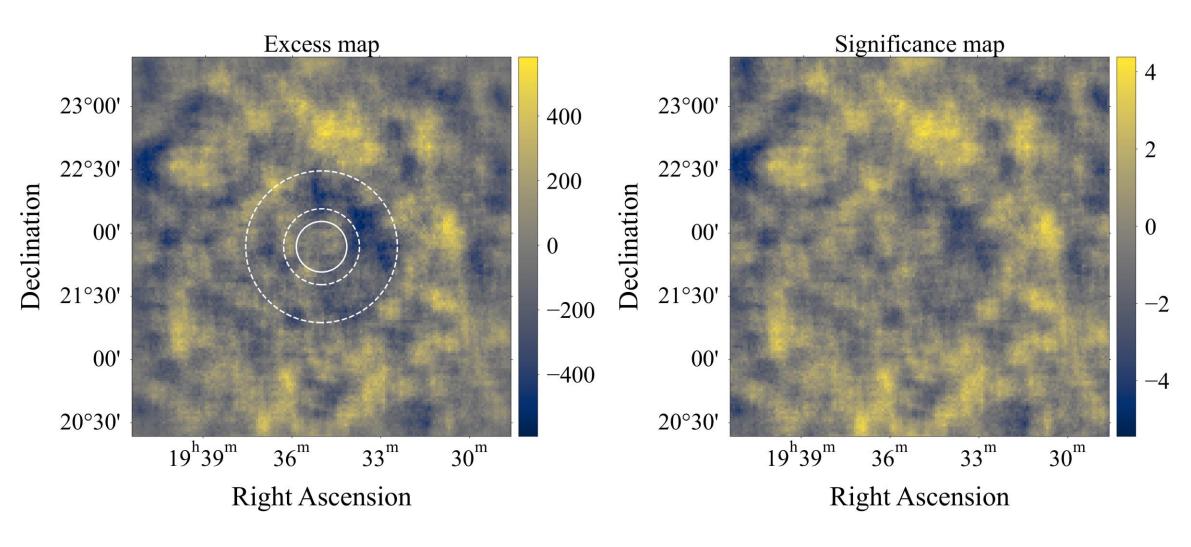
Conclusions

- We analysed >25h of good-quality LST-1 observations
- No persistent TeV emission detected, in agreement with observations and models.
 - Cutoff expected at MeV for magnetars.

• TeV ULs ~ X-ray flux

- We developed the **Burst Analysis** for short transients with low-photon-statistics
- No TeV Burst emission detected for 9 bursts simultaneous to LST-1 observations
 o Burst TeV ULs ~10⁻³X-ray Burst Flux
- TeV emission not ruled out for other similar sources (e.g., progenitors of FRBs)
 - Magnetars, GMFs, FRBs, short GRBs, fast transients... remain interesting targets for CTAO, LST-1
- Non-Consortium Scientific Paper to A&A

Thank you


www.ctao.org

www.ctao.org

Persistent Emission

LST-1 Observations Of Magnetar SGR 1935+2154: Deep Limits On Sub-second Bursts And Persistent TeV Emission

• Aims.

- Search for potential TeV counterpart to SGR 1935+2154 emission (persistent, bursting)
- Insights on mechanisms of magnetar emission and Very-High Energy (VHE) processes
- Methods.
 - Stacked spectral analysis (25h) for persistent emission (2021-2022 observations)
 - **Burst Analysis** in 9 windows (0.1s) for transient emission [in *low-photon-statistics* regime]
- Results
 - No persistent nor transient VHE emission detected
 - TeV Upper Limits (ULs) to *short magnetar burst emission* simultaneous to X-ray bursts.
- Conclusions
 - If TeV emission exists, conditions not covered by observations
 - Burst Analysis development for LST-1, can be applied to fast transients (e.g. FRBs)

The low-photon-statistics regime

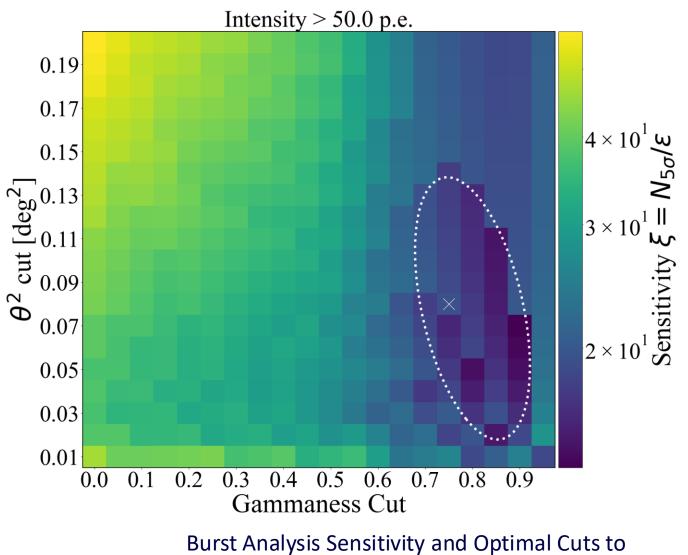
• Significance, Flux Estimation require \gtrsim 10 photons

Wilks' Theorem

- Not possible in low-photon-statistics regime
 o For LST-1: ≤ 10s
 - Short GRBs, Fast Radio Bursts (FRBs), Magnetar Bursts and Flares
- We developed the Burst Analysis for CTAO LST-1

• Based on Poisson statistics

• Science Case: Magnetar Bursts of SGR 1935+2154



Transient Emission

Burst Analysis Cuts (Not in paper)

- Li&Ma, MLE not applicable on 0.1s time scale due to *low-photon-statistics* regime
- Must redefine sensitivity and optimise cuts
- Hypothesis Test: *Poisson* Background
 - $N_{5\sigma}$: counts to have a detection in a 0.1s bin above a constant background rate measured from OFF region.
 - ε: cuts Efficiency on γ-rays, measured from MC simulations
 - Sensitivity $\xi = \frac{N_{5\sigma}}{\epsilon}$
- Optimal Burst Cuts: $g_{cut} = 0.75$, $i_{cut} = 50$ p.e., $\theta_{cut}^2 = 0.08$ deg^2

detect a 0.1s burst

LST COLLABORATION

Transient Emission

$$\mu_{s,UL} = \frac{1}{2} F_{\chi^2}^{-1}(p|2(N_{ON} - 1)) - \mu_{BKG}$$
$$p = 1 - \alpha \left(F_{\chi^2}(2\mu_{BKG}|2(N_{ON} - 1)) \right)$$

Flux UL = $\mu_{s,UL}$ / Exposure

- $\alpha = 0.95$ Confidence Level
- *F* Cumulative Distribution Function of χ^2 \circ DOF = 2(N_{ON} - 1)