

Finanziato dall'Unione europea NextGenerationEU

Anomaly Detection with Machine Learning on Time Series: Unveiling Lost Transients Data

Andrea Adelfio, Sara Cutini, Stefano Germani (INFN Perugia) , Simone Maldera (INFN Torino), Francesco Longo (INFN Trieste) and Riccardo Crupi (Univeristy of Udine)

Sexten, 30-06-2025 – 04-07-2025

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Our Aims

-To develop an Anomaly Detection algorithm for Time Series data using Machine Learning techniques and efficient triggering algorithm;

-Apply it to create a pipeline for the astrophysical data from the Fermi Anti-Coincidence Detector (ACD) to find astrophysical transients (GRBs, FRB, SGR);

Our Aims

-To develop an Anomaly Detection algorithm for Time Series data using Machine Learning techniques and efficient triggering algorithm;

-Apply it to create a pipeline for the astrophysical data from the Fermi Anti-Coincidence Detector (ACD) to find astrophysical transients (GRBs, FRB, SGR);

Methodology

The functionality of this framework can be summarized in two points:

- 1. Get a baseline prediction \widehat{Y} of a signal *Y*, given a set of context variables *X* and a corresponding value of $\widehat{Y} = f(X)$.
- 2. To use the prediction for the background of *Y* to find significant deviations in the signal with an efficient algorithm.

Methodology

The functionality of this framework can be summarized in two points:

- 1. Get a baseline prediction \widehat{Y} of a signal Y, given a set of context variables X and a corresponding value of $\widehat{Y} = f(X)$, with a function that can be modeled with some Machine Learning technique.
- 2. To use the prediction for the background of Y to find significant deviations in the signal with an efficient algorithm.

Methodology

The functionality of this framework can be summarized in two points:

- Get a baseline prediction Ŷ of a signal Y, given a set of context variables X and a corresponding value of Ŷ = f(X), with a function that can be modeled with some Machine Learning technique.
- 2. To use the prediction for the background of Y to find significant deviations in the signal with an efficient algorithm, the Functional Online CuSUM (FOCuS) algorithm.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Triggering Algorithm

The optimal choice would be a triggering algorithm sensitive to transients of different time scales, and that does not require predefined window sizes for background estimation or fixed thresholds for anomaly detection.

Triggering Algorithm: FOCuS

The Functional Online CuSUM (FOCuS) is a fast and efficient algorithm based on the computation of the cumulative sum of the significance of the data.

Efficient: computes the sum of score statistics and compares it to a threshold. Efficient at identifying change points in the data set.

Fast: only records score statistics of data points that deviate from the distribution.

$$S(s,n) = \sum_{i=s+1}^{N} H(x_i,\mu_0)$$

Very powerful to estimate the start of an anomaly, before the cumulative sum is above the threshold.

Triggering Algorithm: FOCuS

The Functional Online CuSUM (FOCuS) is a fast and efficient algorithm based on the computation of the cumulative sum of the significance of the data.

Can be used in *flavours*: -Poisson-FOCuS: assumes a Poisson-like distribution of data; can be used for count rates data.

-Gaussian-FOCuS: assumes a Gaussian distribution; can be used for continuous signals (flux...)

-Non-parametric-FOCuS: no assumptions on the type of data.

Anomaly Detection Software

Can be used in the form of an online/offline pipeline to analyse time series data.

The documentation is available (needs constant updating), together with a set of examples, both in modular form and in the form of a pipeline.

You can also find a poster on its application on the Fermi ACD data.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Our Aims

To develop an Anomaly Detection algorithm for Time Series data using Machine Learning techniques and efficient triggering algorithm;

-Apply it to create a pipeline for the astrophysical data from the Fermi Anti-Coincidence Detector (ACD);

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Fermi ACD application

-To develop an Anomaly Detection algorithm for Time Series data using Machine Learning techniques and efficient triggering algorithm;

-Apply it to create a pipeline for the astrophysical data from the Fermi Anti-Coincidence Detector (ACD);

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

X: Solar Activity Data from GOES X-Ray Sensor (XRS)

It describes the flux of X-rays coming from the Sun.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

-top (Z)

-Yneg (Y-)

Y: ACD Data

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Y: ACD Data

- -top (Z)
- -Xpos (X+)
- -Xneg (X-)
- -Ypos (Y+)
- -Yneg (Y-)

- The ACD data are sampled with the same trigger rate of the Large Area Telescope:
 - 1) The trigger rate depends on the region of the sky that the LAT is observing;
 - 2) If an event is observed by the LAT, the trigger rate increases.

Down sampling the data will result in a dataset proportional to the flux of particles hitting the tiles of the ACD at a constant sampling rate, independent of the triggering rate of the LAT.

Y: ACD Data

- -top (Z)
- -Xpos (X+)
- -Xneg (X-)
- -Ypos (Y+)
- -Yneg (Y-)

- An additional step has been added to the pre-processing of the data:
- For each hit tracked in the ACD we know the (deposited) energy (in the sample interval of the trigger rate -> PILE-UP)
- This makes it possible to split the time series into three energy ranges, for each face of the ACD:
- LOW: E < 0.01 MeV
 MIDDLE: 0.01 MeV < E < 0.5 MeV
 HIGH: E > 0.5 MeV

Higher potential to analyse anomalies.

Y: ACD Data

- -top (Z) x3
- -Xpos (X+) x3
- -Xneg (X-) x3
- -Ypos (Y+) x3
- -Yneg (Y-) x3

- An additional step has been added to the pre-processing of the data:
- For each hit tracked in the ACD we know the (deposited) energy (in the sample interval of the trigger rate -> PILE-UP)
- This makes it possible to split the time series into three energy ranges, for each face of the ACD:
- LOW: E < 0.01 MeV
 MIDDLE: 0.01 MeV < E < 0.5 MeV
 HIGH: E > 0.5 MeV

Higher potential to analyse anomalies.

Missione 4 • Istruzione e Ricerca

Y: ACD Data

datetime (2024-04-25 00:08:20+00:00)

datetime (2024-04-25 00:08:20+00:00)

datetime (2024-04-25 00:08:20+00:00)

datetime (2024-04-25 00:08:20+00:00)

BNN Results

This is the prediction of the model for the Xpos signal.

BNN Results

This is the prediction of the model for the Xpos signal.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

08 23:30

Comparing with Catalogs

We are comparing the events with catalogs from different instruments:

- Fermi GBM Triggers Catalog (+ Fermi GBM OnlyGRBs Catalog)
- Space Variable Objects Monitor (SVOM) GRM (from GCN)
- Einstein Probe (EP) (from GCN)
- Swift BAT Catalog

Gaussian-FOCuS Results (PRELIMINARY)

(PRELIMINARY) FFNN: uses the FFNN as background estimation and a rolling standard deviation to estimate the uncertainty.

MA: uses a moving average as background estimation and a rolling standard deviation to estimate the uncertainty.

BNN: uses the FFNN as background estimation for the background estimation and the BNN outputs to get the uncertainty estimations.

	FFNN (5σ)	MA (5σ)	FFNN (6σ)	MA (7σ)	BNN
SFLARE	39	54	37	1	?
GRB	13	21	13	0	?
TGF	3	7	3	1	?
SGR	2	0	2	0	?
LOCALPART	13	21	10	2	?
DISTPART	1	5	0	0	?
UNCERT	9	12	9	1	?
TOT w/ c.p.	80	120	74	5	
TOT	23k	40k	20k	1k	

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Unknown events

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

MET (739625401.1997255)

Localization

Use the magnitudes of the fluxes in the faces along the 3 axes to obtain the (Θ , ϕ) angles in order to compare it with the localization the known events.

e.g. LOCLPAR2406094 (Θ , ϕ) = 0.0474°, 258.8200° me (2024-06-09 11:30:00+00:00) datetime (2024-06-09 11:30:00+00:00) ime (2024-06-09 11:30:00+00:00) 09 11:50 09 11:50 09 11:55 09 11:50 09 11:55 19 22:45 09 11:55 09 11:35 ··· 09 12:00 09 12:05 09 12:05 09 12:00 0.012 T_M [count/m²/s] [count/m²/s] [count/m²/s] 0.024 0.020 smooth smooth 0.020 0.012 0.008 0.010 0.008 0.006 0.008 0.006 0.004 0.004 0.004 Y_{M}^{+} [count/m²/s] 0.0200 [count/m²/s] 0.020 MET (739625401.1997255) 0.0175 Y_M^+ smooth smooth 0.0150 0.008 0.0125 0.0200 0.006 0.0075 1500

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

MET (739625401.1997255

Localization

Use the magnitudes of the fluxes in the faces along the 3 axes to obtain the (Θ , ϕ) angles in order to compare it with the localization the known events.

e.g. LOCLPAR2406094 (θ, φ) = 0.0474°, 258.8200° (θ, φ) = 59.052°, 57.005°

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Next Steps

-Complete the dataset with the whole 2024 and up until today. (IN PROGRESS)

- -Check for BNS/BBH mergers counterparts
- -Localization of events using the triggered faces to check the consistency with localizations in catalogs. (IN PROGRESS)
- -Classification of the events (!) (IN PROGRESS, thanks to localization and energy characterizations)

-Implement the framework as an online pipeline for the ACD data (!)

Thank You

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing