First observation of an Ultra-High Energy neutrino with KM3NeT

Silvia Celli on behalf of the KM3NeT Collaboration

silvia.celli@roma1.infn.it

Sapienza Università di Roma, Italy INFN - Sezione di Roma, Italy

Sexten School - Advances in Modeling High-Energy Astrophysical Sources - 3rd July 2025

Outline of the talk

- The KM3NeT infrastructure
- KM3NeT/ARCA observation
 of KM3-230213A
- Possible origin
- Conclusions

Neutrino telescopes around the world

ANTARES Complete since 2008

KM3NeT Under Construction

KM3NeT at a glance

Main detector elements:

- **Digital Optical Modules (DOMs)**
- **Detection Units (DUs)**
- Seafloor network: Junction Boxes (JBs) and electro-optical cables

KM3Ne¹

KM3NeT: a top view

ARCA (1 GTon)

Astroparticle Research with Cosmics in the Abyss

3500 m depth, offshore Sicily

ORCA (6 MTon)

Oscillation Research with Cosmics in the Abyss

2500 m depth, offshore Toulon

Current status of the KM3NeT detectors

Further sea campaigns planned in next months

Neutrino detection principle & event topologies

- Track like events golden astronomical channel
- Shower like events → calorimetric → diffuse analyses

Neutrino event topology

Muon tracks

Astronomy: angular resolution

Isolated neutrinos interacting in the detector

Calorimetry + all flavors

Neutrino event topology

Muon tracks

Isolated neutrinos interacting in the detector

KM3Ne^{*}

The cosmic neutrino sky before Feb 2023

1. THE ALL-SKY DIFFUSE

2. THE MILKY WAY IN MULTI-MESSENGERS

4. NEUTRINO TRANSIENT SOURCES

Astro. ν_{μ}

NGC 1068

3. NEUTRINO STEADY SOURCES

The neutrino landscape before Feb 2023

KM3-230213A: features

- Trigger time: Feb 13th 2023, 01:16:47 UTC
- ARCA21 configuration (21 DUs, ~0.2 km³), 335 days of livetime
- Bright track selection (length > 250 m, $N^{trigPMT}$ > 1500, logL > 500)
- KM3-230213A: nearly horizontal event (0.6° above horizon),
 RA=94.3°, DEC=-7.8° (l=216.1°, b=-11.1°)
- Containment radii: R(68%)=1.5°, R(90%)=2.2°, R(99%)=3.0°

Not an atmospheric muon

Passes through continental shelf/Malta Actual amount of crossed matter is even larger...

A very well reconstructed muon track

Time residual distributions on different DUs

KM3-230213A: energy

- Energy is measured from the amount of light:
- The parent neutrino energy is estimated to be (E⁻² source flux):

$$E_{\mu} = 120^{+110}_{-60} \text{ PeV}$$

110

$$E_{\nu} = 220^{+570}_{-100} \text{ PeV}$$

KM3-230213A

- Assuming reconstructed energy and direction
 - Expected atmospheric muon contamination @ 100 (10) PeV: << 10⁻¹⁰ (10⁻⁹) event/year within 2σ of reconstructed direction << 10⁻⁴ event/year within 5σ of reconstructed direction
 Expected rate of atmospheric neutrinos >100 PeV: << (1-5) x 10⁻⁵ event/year

The most energetic neutrino ever probed

Comparison with existing limits

 Non-observations by IceCube & Auger place stringent constraints on the neutrino flux associated with KM3-230213A if this were associated with a steady source

The neutrino flux from a steady source

Accounting for IceCube & Auger non-observations we could estimate

$$E^2 \phi_{\nu} = 5.7 \times 10^{-10} \,\mathrm{GeV cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1}$$

Cosmic or cosmogenic?

COSMIC = in situ production at an extreme astrophysical accelerator

COSMOGENIC = resulting from UHECR interaction with background radiation fields permeating the Universe

$$p + \gamma \longrightarrow p + \pi^0, n + \pi^+$$

 $(A, Z) + \gamma \longrightarrow (A - 1, Z) + N$

Testing the cosmic origin

• Out of the Galactic Plane, in the Orion molecular cloud region

 Neutrino counterparts searched for in ANTARES, KM3NeT/ORCA & IceCube datasets

	Dataset			
Detector	Covered Period	Livetime	Type of Data	Radius
	dd/mm/yyyy	[days]		[deg]
ARCA6-21ª	12/05/2021 - 11/09/2023	640	offline ^b	3
ORCA6-18	11/02/2020 - $31/08/2023$	1005	offline	4
ORCA18-23	01/09/2023 - $29/07/2024$	126	online ^c	4
ANTARES	29/01/2007 - 31/12/2017	3125	public ^d	3
IceCube	06/04/2008 - 08/07/2018	3577	public [93]	3

KM3NeT Coll., Nature 638 (2025) 8050

Upper limit on potential point-like source flux set to:

$$(E^2 \phi_{\nu})^{90\% CL} \leq 1.2 \times 10^{-9} \,\text{GeV cm}^{-2} \text{s}^{-1}$$

Hardly of Galactic nature

Potential nearby accelerators searched among:

- SNRs (GreenCat)
- Young star clusters (Gaia DR2)
- X-ray binaries and microquasars (eRosita)
- Pulsars and PWNe (ATNF)
- Gamma-ray catalogs (4FGL, 3HWC, 1LHAASO)

KM3NeT Coll., arXiv:2502.08387

No plausible counterparts found

Testing the extra-galactic origin

- Electromagnetic counterparts searched in a 3° cone around the event direction
- Fermi 4FGL sources
- TeVCat and 3HWC data
- Optical transients (ZTF)
- GCN, TNS and AT transients

17 (2) blazars found in the 3σ
(1σ) uncertainty region of 3°
(1.5°) radius

 Blazars (radio VLBI/ALMA, infrared WISE/, optical ATLAS/CRTS/ZTF/ Gaia, X rays SWIFT/Chandra/ROSAT/SVOM, gamma rays Fermi)

Possible flaring blazar counterparts

Testing the cosmogenic origin

UHECR interaction length depends on their energy distribution and mass composition

On Earth fluxes also vary with cosmological source evolution:

Testing the cosmogenic origin

UHECR interaction length depends on their energy distribution and mass composition

On Earth fluxes also vary with cosmological source evolution:

A milestone in neutrino astronomy

- KM3-230213A is by far the most energetic neutrino measured so far
- It is the **first UHE neutrino detected**, opening the explorations of physics in a new energy region
- Several plausible scenarios might explain its nature
- More observations to come will clarify the origin of UHE neutrinos
- KM3NeT is taking data and growing rapidly

STAY TUNED FOR UPDATES!

KM3-230213A

KM3-230213A: direction

Hit arrival time (ns)

Hit times fully consistent with **Cherenkov photons**

- From reconstruction algorithms, a muon track and three showers detected, as expected in muon stochastic energy losses
- The collinearity of showers supports the single muon hypothesis

30

Background distribution

A nearby transient source?

A nearby transient source?

- Flare with duration T<2 yr compatible with IC non observation
- Particle injection spectrum must be harder than E⁻² (either from monochromatic protons or as a result of pγ interactions)
- Source rate not extreme

Neronov et al., arXiv:2502.12986

The large shielding from Malta's shelf

Muon energy losses

Hardly of Galactic nature

Unlikely related to Galactic diffuse neutrino emission... even with the dense target of MonR2

К

KM3NeT Coll., arXiv:2502.08387
Hardly of Galactic nature

Unlikely related to Galactic diffuse neutrino emission... even with the dense target of MonR2

🔰 кі

KM3NeT Coll., arXiv:2502.08387

Hardly of Galactic nature

KM3-230213A and non-blazar searches

- 3 non-blazar AGN identified in the KM3-230213A 68% search region via ASKAP/VLASS data
 - UGCA (aka Phaedra)
 - WISEA J061715.89–075455.4 (aka Hebe)
 - EMU J062248–072246 (aka Narcissus)

Filipovic et al., arXiv:2503.09108

Is there tension with IC/Auger non observations?

We tested a generic single power-law flux in UHE band

Bayesian approach Frequentist approach

 \rightarrow 2.5 σ tension

Is there evidence of a new component?

- Both single (SPL) and broken power law (BPL) flux hypotheses tested across the entire astrophysical neutrino spectrum
- Three IceCube measurements below 10 TeV: HESE, ESTES, and NST

UHE Sample(s) KM3-230213A				Global		
HE Sample	HESE	ESTES	NST	HESE	ESTES	NST
Bayes factor \mathcal{B} LR p-value (%)	$\begin{array}{c} 27.0\\ 0.4 \end{array}$	$8.7 \\ 1.7$	$3.9 \\ 5.9$	$\begin{array}{c} 1.2\\ 33 \end{array}$	$\begin{array}{c} 0.6 \\ 86 \end{array}$	$\begin{array}{c} 0.3 \\ 100 \end{array}$

• No preference for BPL over SPL in the global fit

UHECRs by Auger

UHECRs by Auger and the sub-ankle component

X

UHECRs by Auger: hadronic cross section

UHECR fit by KM3NeT

Testing the cosmogenic origin

Event rate in ARCA21 (335 days livetime)

Maximal proton content allowed by UHECR mass composition

Dominant contribution expected from sources in the deep Universe: increased source number & effects due to photodisintegration interaction

IC latest results on cosmogenic neutrinos

IceCube Coll., arXiv:2502.01963

Diffuse gamma-ray constraints to cosmogenic neutrinos

The diffuse extragalactic gamma-ray flux is a very powerful observable to constrain the fraction of protons in the UHECR spectrum, therefore the expected cosmogenic neutrinos.

Cermenati, Ambrosone, Boccioli, Evoli, Aloisio (in prep.) 48

Measuring the HE vN cross section

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

Measuring the HE vN cross section

Measuring the HE vN cross section

World-leading constraints on LIV

• A superluminal neutrino would quickly loose energy via

$$\nu \to \nu + e^+ + e^-$$

Decay width given by

 $\label{eq:gamma} \Gamma \propto E^5 \delta^3$ with $\delta = c_\nu^2 - 1$

 Thus KM3-230213A energy place the stringent existing constraint

Method	Limit
IceCube atmospheric	6.2×10^{-11}
IceCube NGC 1068	1.5×10^{-15}
IceCube TXS $0506+056$	2.4×10^{-18}
Stecker et al. (Ref. [20])	5.2×10^{-21}
KM3-230213A (conservative)	1.8×10^{-21}
KM3-230213A (likely)	4.2×10^{-22}

BSM origin of KM3-230213A? Decay of heavy dark matter

Multi-component DM: heavy (χ , unstable) & lighter ($\tilde{\chi}_{-}$, stable)

BSM origin of KM3-230213A? Primordial black holes

KM3NeT

A growing detector

Further sea campaigns planned in the next months

Absorption and scattering: water vs ice

	acqua marina	acqua	ghiaccio
	(Mar Mediterraneo)	(Lago di Baikal)	(Polo Sud)
	$\lambda = 473(375) nm$	$\lambda = 480 nm$	$\lambda = 400 nm$
$_{\lambda_{s}^{\mathrm{eff}}}^{\lambda_{a}}$	$60 \pm 10(26 \pm 3) m$ $270 \pm 30(120 \pm 10) m$	20 - 24 m 200 - 400 m	$\frac{110 m}{20 m}$

Tabella 3.2. Parametri della propagazione della luce in acqua e ghiaccio.

 ${}^{40}\mathrm{K} \rightarrow {}^{40}\mathrm{Ca} + e^- + \bar{\nu}_e$

e

$${}^{40}\text{K} + e^- \rightarrow {}^{40}\text{Ar} + \nu_e + \gamma.$$

Gli elettroni prodotti nel primo processo, spesso, hanno energia sufficientemente elevata da indurre l'effetto Cherenkov, mentre nel processo di cattura dell'elettrone, il fotone nello stato finale viene prodotto con un'energia ($E_{\gamma} = 1.46 M eV$) che può facilmente portare alla produzione di elettroni con energie sopra la soglia di emissione di luce Cherenkov.

ARCA21 performance

Zavatarelli et al., RICAP2024, doi:10.1051/epjconf/202531906010

Pointing capabilities

Natural water background: bioluminescence

- Limited in deep sea location
- Uncorrelated hits
- Real time monitoring
- Correlation with water current

Natural water background: K40 decay

- (usually on single PMT) Trigger filtering L1: requires
- coincidences within 10 ns in the same DOM

bioluminescence

peaks

5700

5800

5900

6000

Time (in sec)

- Trigger filter L2: uses the known orientation of PMTs
- Physics event filter

5600

Event reconstruction

Full sky search with directional filter: **Time + Position** information on individual PMTs for track reconstructions

$$t_i^{th} = t_0 + \frac{1}{c}(l - \frac{k}{\tan \theta_c}) + \frac{1}{v_g}(\frac{k}{\sin \theta_c})$$

Minimization of the time residuals between measured hits and expected hits, based on fitted muon track direction (+ maximum distance travelled by light)

Geometry calibrations

position —— acoustic data

- emitters: beacons anchored to the seabed closely the detector
- receivers: hydrophones located at DU bases & piezo sensors glued in DOMs
- triangulation of acoustic signals to derive DOM positions, constrained by mechanical model of DUs

orientation —— compass data

- attitude and heading reference system (AHRS), aka compass
- it is a set of accelerometers and magnetometers mounted on the electronics boards of each DOM

Dynamic position and orientation systems updating every 10 minutes, with expected accuracies of < 10 cm and a few degrees

Time calibrations

→ optical data

• Intra DOM calibration (PMT t0 set)

K40 fit to extract relative time shift between PMTs T0 shift correction due to HV tuning (1-2 ns) Requires a set of runs leading to the max # of active PMTs

• Inter DOM calibration (DOM t0 set)

So far only performed in dark room before deployment

For the future, nanobeacon runs might be used for in-sea interDOM calibrations

• Inter DU calibration (DU t0 set)

Atmospheric muons used as the maximum likelihood in reconstruction algorithms is achieved for a detector as close as possible to reality

+ **master clock system** (onshore), providing common reference to all offshore electronics, via a network of optical fibers (WR)

PMT efficiency calibrations

optical data

Coincidence signals on adjacent PMTs is dominated by K40 decay

$${}^{40}\text{K} \rightarrow {}^{40}\text{Ca} + e^- + \overline{\nu}_e \qquad (89.3\%)$$

$${}^{40}\text{K} + e^- \rightarrow {}^{40}\text{Ar}^* + \nu_e \qquad (10.7\%)$$

$$\hookrightarrow {}^{40}\text{Ar} + \gamma$$

• Distribution of coincident hits is fitted:

$$f(t) = p + a \cdot \exp\left(-\frac{(t - t_0)^2}{2\sigma^2}\right)$$
$$R = \frac{a \cdot \sigma \cdot \sqrt{2\pi}}{\Delta \tau} \longrightarrow \epsilon_i = \sqrt{\frac{1}{R_c^*} \frac{R_{ij} \cdot R_{ki}}{R_{jk}}}$$

- Measurements: Gain, Gain spread, Efficiency
- Channels with bad response are masked (sedimentation, biofouling and exchange of deep sea water might affect efficiencies)

KM3NeT ongoing analyses & prospects

ARCA diffuse flux analysis

*More than one year of ARCA28/33 data not included yet

• • •

Tsourapis et al., ICRC2023, doi:10.22323/1.444.1195

Fusco et al., Neutrino 2024, doi:10.5281/zenodo.13899660

ARCA point source search

~100 sources analysed, selected based on:

- Interesting sources in earlier IceCube & ANTARES searches / alerts
- Bright gamma-ray emitters
- Galactic gamma-ray sources with hints of hadronic component (TeVCat)
- Extragalactic AGN with highest maximal flux observed in radio (VLBI)

Most significant source: BL Lac Mkn 421 (assuming E^{-2.5} spectrum), post trial p-value 56%

Muller et al., ICRC2023, doi:10.22323/1.444.1018

KM3NeT/ARCA is rapidly evolving approaching ANTARES and IceCube sensitivities

*More than one year of ARCA28/33 data non included yet

ARCA Galactic Ridge analysis

^{*}More than one year of ARCA28/33 data not included yet

Filippini et al., ICRC2023, doi:10.22323/1.444.1190

Fusco et al., Neutrino 2024, doi:10.5281/zenodo.13899660

The KM3NeT/ARCA astronomical potential

ARCA energy resolution

S. Aiello et al. [KM3NeT Coll.] arXiv:2402.08363

70

R. Muller et al. [KM3NeT Coll.], PoS (ICRC2023) 1018

Neutrino astronomy

1. Search for cosmic neutrinos with the upgoing track-like sample

Earth is used as shield against all particles, except neutrinos that can traverse the Earth

Upgoing event selection

Palacios et al., PoS (IHEP 2024)

Neutrino background

 $\epsilon_K = 850 \,\mathrm{GeV}$

2. Search for cosmic neutrinos with the high-energy starting sample

"Vetoing the muon produced by the same parent meson decaying in the atmosphere"

$$\pi \longrightarrow \mu^{atmo} + \nu_{\mu}^{atmo}$$

Schonert, Gaisser, Resconi & Schult, Phys. Rev. D79 (2009) 4

- Detects penetrating muons
- Reduced effective volume (400 MTon)
- Sensitive to all flavors
- Sensitive to the entire sky

$$E_{\nu} > 60 \,\mathrm{TeV}$$
 in IceCube

1. The all-sky diffuse neutrino flux

76

2. Neutrinos from the Galactic Plane

- Template-based data fit assuming different models reproducing the GeV gamma-ray Galactic diffuse emission:
 - π⁰ extrapolation of Fermi-LAT spectrum (E^{-2.7}) to VHE;
 - KRA_γ CR propagation with (harder) spatial dependent diffusion;
- Signal excess @ 4.5σ.
- Galactic flux contribution to total diffuse between 6% and 13% @ 30 TeV.

3. IceCube all-sky scan & catalog-based analysis: an excess from NGC1068

- 10yr time-integrated IceCube data show a 2.9σ hot-spot from the direction of the Seyfert-II galaxy NGC1068, a diskobscured AGN (no TeV gamma rays detected so far);
- In catalog-based search, the signal excess amounts to 4.2σ.

4. TXS 0506+056: a flaring blazar

4. TXS 0506+056: a 3σ excess in archival search

- 13±5 events in 110 days
- coincidence probability (**post-trial**):
 p-value ~2x10⁻⁴ (~**3.5σ**)
- energy range (68%): 32 TeV 3.6 PeV
- $L_v > 10^{37} \text{ erg/s}$

