

First results from the SVOM mission

Frédéric Piron

Laboratoire Univers et Particules de Montpellier (CNRS/IN2P3/LUPM)

Sexten Workshop, 2025 July 3

The SVOM consortium

• China (PI J. Wei)

- SECM Shanghai
- Beijing Normal University
- Central China University Wuhan
- GuangXi University Nanning
- IHEP Beijing
- KIAA Peking University
- Nanjing University
- NAOC Beijing
- National Astronomical Observatories
- Purple Mountain Observatory Nanjing
- Shanghai Astronomical Observatory
- Tsinghua University Beijing
- Mexico UNAM Mexico

- France (PI B. Cordier)
 - CNES Toulouse
 - APC Paris
 - $\circ \quad {\sf CEA \ Saclay}$
 - CPPM Marseille
 - LUX Meudon
 - IAP Paris
 - IJCLab Orsay
 - IRAP Toulouse
 - LAM Marseille
 - LUPM Montpellier
 - ObAS Strasbourg
- United Kingdom University of Leicester

- Germany
 - MPE Garching
 - IAAT Tübingen

Space-based Variable Objects Monitor

- 2024 June 22: launch from Xichang (Sishuan) by a LM-2C rocket
- 2025 April: beginning of scientific operations
- 3+2 years (+extension)

Post-launch phases

The SVOM system

- On board: 4 instruments (2 wide FoV, 2 narrow FoV), VHF antennas, slewing capability
- On ground: 3 telescopes for rapid follow-up observations, VHF stations

Orbit and pointing strategy

- Low Earth Orbit: 650 km, 30° inclination, 1 orbit ~ 96 min
- Nearly antisolar attitude law to facilitate follow-up observations from ground
 - Earth in the FoV: 65% duty cycle for ECLAIRs (50% for MXT and VT)
 - ECLAIRs FoV: avoidance of Galactic plane and Sco-X1

The SVOM payload

The ECLAIRs X/gamma-ray imager Coded Mask Schottky CdTe detector Shielding Thermal Control DPIX Detection Plan High voltage grid DPIX Front End Electronics letector cerami UGTS Field of view 2.05 sr 4-150 keV Energy range Detection plane area 1024 cm² • Energy <1.6 keV @60 keV 6400 CdTe pixels (4x4x1 mm3) resolution Ο All photons are sent to the ground • Effective area 200 cm² @6 keV Onboard real-time trigger and localization • Ο <12 arcmin (90% of Localization sources at detection Ο accuracy limit)

Coded mask 54x54 cm², 40% open fraction

- Strongly varying background (Earth transit through FoV every orbit)
- Time scales 10 ms to 20 min, 4 energy bands, 9 detector zones
- Count Rate Trigger (CRT, <20 s) and Image Trigger (IMT, >20 s) Ο

GRB 250403A with ECLAIRs

- Scorpius X-1: galactic LMXB (9000 I.y. from Earth), most powerful X-ray source
- GRB 250403A at z = 1.857: as intense as Sco X-1!

Field of view	5.6 sr (GRD ±60°)	
Energy range	15-5000 keV	
Energy resolution	<19% @60 keV	
Effective area	190 cm² @peak for each GRD	
Localization accuracy	Several degrees (under study)	

The Gamma-Ray Monitor (GRM)

- 3 Gamma-Ray Detectors (GRDs)
 - Nal(Tl) (16 cm Ø, 1.5 cm thick)
 - Plastic scintillator (6 mm) to monitor particle flux and reject particle events
 - 30° inclination w.r.t. ECLAIRs optical axis
- Count Rate Trigger (2 GRDs above threshold)
 - Time scales 0.1 to 4 s, 4 energy bands

The VHF alert network

- 47 stations deployed under the satellite track
- Alerts are received on the ground (French Science Center) with <u>a median delay of ~7.6 s</u>
 - Lost VHF packets are recovered via Beidou in case of coverage gap: median delay of ~81s

- GCN public alerts
 - Notice since February 2025
 - First circular (detection and localization in case of ECLAIRs trigger)

The Micro-channel X-ray Telescope (MXT)

Real vs. manufactured "lobster eyes"

• Micro-channel plate optics

- 20 micron size pores in a "lobster eye" configuration
- Focal length: 1 m
- pnCCD camera (256x256 pixels of 75 microns)

Field of view58x58 arcmin²			
Energy range	0.2-10 keV		
Energy resolution	80 eV (FWHM) @1 keV		
Effective area	27 cm² @1 keV (central spot)		
Localization accuracy	<1 arcmin (50%) <2 arcmin (90%) Syst. under study		

The Visible Telescope (VT)

- Ritchey-Chretien telescope
 - 40 cm Ø, f=9
 - Focal length: 3.6 m
 - 2 channels: blue (400-650 nm) and red (650-1000 nm)
 - 2k * 2k CCD detector each
- FoV covering ECLAIRs error box in most cases
- Will detect 80% of ECLAIRs GRBs

Field of view	26x26 arcmin ²
Sensitivity	Mv=22.7 (B/R) (3σ, 300 s)
Localization accuracy	B: 80% @1.4 arsec R: 70% @0.9 arsec
Photometry accuracy	Blue: 1.3% Red: 0.5%

Ground segment telescopes

• Ground-based Wide Angle Camera (GWAC)

- 36 camera units covering 5400 deg² (~1/2 ECLAIRs FoV)
- Installed in Ali (China) and CTIO (Chile)
- 500-800 nm; mlim=16-17 (10 s exposure)
- Explore the prompt optical emission

• Ground Follow-up Telescopes (GFTs)

- Robotic 1-m class telescopes (fast repointing, <30 s)
- San Pedro Martir (Mexico) and Xinglong observatory (China)
- **C-GFT**: 1.2 m, FoV = 21x21 arcmin², 400-950 nm
- F-GFT (a.k.a. Colibri): 1.3 m, FoV = 26x26 arcmin², multi-band photometry (400-1700 nm, 3 simultaneous bands)
 - A new camera (CAGIRE) to be installed in coming months, allowing observations in J,H bands
- Accurate GRB localization → observations with large telescopes

Boosting the synergy between space and ground-based telescopes

- SVOM follow-up network: from 25cm to the 8m class telescope
 - >75% of ECLAIRs GRBs immediately visible by one ground telescope (GFTs+LCOGT)
 - Early observation by large telescopes favored by pointing strategy \rightarrow z measurement expected in ~2/3 of cases

- Synergies with Swift and Einstein Probe: ECLAIRs trigger → automatic ToO requests
 - to Swift/XRT since February 2025
 - to EP/FXT since April 2025

Source: www.svom.fr

15

GRB 250205A: a textbook case

- Mobilization of the GRB community
- At T0+1h45: OSIRIS+ on the 10.4 m GTC (La Palma) \rightarrow z = 3.55

Scientific Programs

The General & ToO programs

GP obs (known sources): observation proposals awarded by a TAC (your proposal has to include a SVOM co-I). ToO obs (not anticipated flaring sources): If you want a ToO, please contact the SVOM PIs

Exposure map and pointings (1st year)

- ECLAIRs sky exposure
 - B1 attitude law \rightarrow mostly towards galactic poles
- Platform pointing directions
 - **GP**: predefined sky areas while awaiting GRBs
 - **ToOs**: known astrophysically interesting targets

- 35% of available time devoted to ToOs, half of which for GRB revisits to build VT light curves
 - >2/3 of these revisits were conducted for SVOM-detected bursts, <1/3 for Swift, EP and Fermi

The SVOM X-ray/ γ -ray transient sky after one year

E(B-V)

SVOM transient statistics (1st year)

Prelim	SGR	LMXB	НМХВ	Variable / flaring star	AGN / blazar	unknown	Total
	3 (4%)	~40 (54%)	~19 (24%)	4 (6%)	3/1 (4%)	6 (8%)	~76

SVOM GRB statistics (1st year)

Preliminary	GRM detection (Half time in commissioning)	ECL detection (Half time in commissioning)	Total ECL+GRM detection	Jointly detected by Swift / EP / Fermi	# z _{grm}	# z _{ecl}
Observed	110	46	131 105 Long (80%), 18 Short (14%), 8 XRF (6%)	89 (68%)	10 (9%)	16 (35%)
Expected	>100	30 - 60	_	—	_	> 50%

ECLAIRs first GRE (GRB 240713A)	3	ECL median	MXT median	X-ray	Optical	Radio	
120 130	8	loc.	loc.	afterglows	afterglows	afterglows	z > 4
140 ^{Age} 150 160	4	~7'	~40"	48 (36 ECL)	34 (27 ECL)	5	4/26 (15%)
170 120 140	-2	L	1	1			

Isky

Soft Gamma-Ray Bursts

Goal: explore the diversity of long GRBs and the event continuum following the collapse of a massive stare \rightarrow complete physical interpretation of the poorly known population of very soft X-ray bursts

- Connection between classical collapsar GRBs and "failed" or low-luminosity GRB collapsars?
- Shock breakout emission?
- Geometry effect \rightarrow off-axis jet?
- Low Γ jets?
- High redshift effect?

Soft Gamma-Ray Bursts

Soft Gamma-Ray Bursts

GRB 241113B Adrien et al. (in prep)

- A very soft X-ray burst jointly detected by SVOM and EP/WXT
- Good coverage of the optical afterglow: SVOM/VT, KAIT & Mephisto (associate partners)
- Faint X-ray afterglow also detected by EP/FXT

Short Gamma-Ray Bursts

Goal: contribute to build a sample of fully characterized short GRBs, including the properties of the host galaxy

GRB 240821A (z = 0.238) Daigne, Zhang et al. (in prep)

- First ECLAIRs + GRM joint detection (T90 ~ 50 s)
- Initial pulse (IP) + temporally-extended emission (EE)
- EE plateau like, soft (<50 keV), non thermal, no sp. evolution
- Faint X-ray afterglow, but consistent with other SGRBs with EE
- Host galaxy (GTC, VLT, Keck) unusual for LGRB

25

Short Gamma-Ray Bursts

GRB 241105A (z = 2.681): another SGRB+EE merger or a disguised LGRB?

- Outside ECLAIRs FoV at trigger time
- Fermi/GBM, Konus-Wind and SVOM/GRM: EE less soft than in GRB240821A
- Would be the highest redshift for a SGRB
- JWST photometry \rightarrow massive & star-forming host galaxy, at low-metallicity, similar to other collapsar hosts at this redshift

High-z Gamma-Ray Bursts

GRB 250314A at z ~ 7.3 Cordier, Wei et al. (in prep)

- Detected by ECLAIRs and GRM (T90 ~ 10s)
- GRM preliminary analysis: classical LGRB in Ep-Eiso diagram
- Fading X-ray afterglow confirmed by EP/FXT
- No detection by SVOM/VT despite automatic slew
- NIR afterglow discovered by the NOT (T0+12.3h)

High-z Gamma-Ray Bursts

Cordier, Wei et al. (in prep)

GRB 250314A at z ~ 7.3

Arrière plan adapté de: ©ESA. ©Planck Collaboration.

- VLT/X-shooter \rightarrow photometric redshift
- 5th most distant burst, ~730 Myr after the Big Bang
- 12.5 years since the last very high-z burst

VLT/X-shooter GCN circular

GCN Circular 39732

- Subject GRB 250314A: VLT/X-shooter dropout, redshift z ~ 7.3
- Date 2025-03-15T12:45:58Z (3 months ago)
- Edited On 2025-03-15T20:14:19Z (3 months ago)
- From Daniele B. Malesani at IMAPP / Radboud University <d.malesani@astro.ru.nl>
- Edited By Vidushi Sharma at NASA GSFC/UMBC <vidushi.sharma@nasa.gov> on behalf of Daniele B. Malesani at IMAPP / Radboud University <d.malesani@astro.ru.nl>
- Via Web form

D. B. Malesani (DAWM/NBI and Radboud), G. PugLiese (API-UvA), J. P. U. Fynbo (DAWM/NBI), B. Schneider (LAM), V. D'Elia (SSDC and INAF-OAR), A. de Ugarte Postigo (LAM), L. Izzo (INAF-OACn and DARK/NBI), P. G. Jonker (Radboud), A. J. Levan (Radboud and Warwick), J. T. Palmerio (CEA/Irfu), N. A. Rakotondrainibe (LAM), A. Saccardi (CEA/Irfu), N. R. Tanvir (U. Leicester), A. L. Thakur (INAF-IAPS), S. D. Vergani (CNRS, Obs. Paris/LUX), D. Xu (NAOC), Z.P. Zhu (NAOC) report on behalf of the Stargate collaboration:

We observed the near-infrared candidate counterpart (Malesani et al., GCN <u>39727</u>) of the long SVOM/ ECLAIRS GRB 250314A (Wang et al., GCN <u>39719</u>) at the ESO VLT, using the HAWK-I near-infrared imager (on UT4, Kueyen) and the X-shooter spectrograph (on UT3, Melipal).

The object is well detected in the Y, J and H filters. HAWK-I observations started on 2025 Mar 15 at 05:23:28 UT (about 16.5 hr after the GRB). We measure preliminary AB magnitudes:

 $\begin{array}{l} Y = 23.2 + / - 0.15 \\ J = 22.4 + / - 0.1 \\ H = 22.5 + / - 0.1 \end{array}$

For the spectra, the observation mid time was 2025 Mar 15.26 UT (about 17.4 hr after the GRB). The data cover the wavelength range 3000-21,000 AA and consist of 4 exposures of 1200 s each.

In a preliminary reduction of the spectra, a faint continuum is confidently detected all across the NIR arm (down to 10,300 AA). Tentative signal is also seen in the very red end of the VIS arm, with a drop around 10,090 AA. While the S/N is too low to confidently identify individual metal absorption features, the break in the VIS is consistent with the onset of the Lyman forest (with possible contribution from damped Lyman-alpha absorption in the GRB host galaxy). The implied redshift is z - 7.3.

The HAWK-I photometry is consistent with a break, rather than with a generically red shape of the continuum, given the red Y-J vs blue J-H color, consistent with the Y filter being partly dropped out. Assuming a power law model (no dust extinction), a fit to the available photometry provides a redshift z = 7.21 + 0.18 - 0.38 (1 sigma c.l.), fully consistent with the spectroscopic value.

We acknowledge expert support from the ESO staff in Paranal, in particular Cedric Ledoux, Enrico Congiu, Francisco Nogueras-Lara, Pascale Hibon, Rodrigo Romero, and Susana Cerda.

Summary

SVOM "white paper": Wei, Cordier et al., arXiv:1610.06892 SVOM special issue in RAA (in prep)

- Nominal instrument performance and operations → scientific operations have started
- In one year, SVOM has detected >70 X-ray transients (mostly known galactic sources)
- In one year, SVOM has detected 131 GRBs (110 GRM, 46 ECLAIRs)
- SVOM is sensitive to all types of GRBs and started to explore the GRB diversity
 - 105 LGRB, 18 SGRB(+EE), 8 XRF
 - \circ Impact of the ECLAIRs low-energy threshold of 4 keV \rightarrow better explore soft GRBs and high-z LGRBs
 - ECLAIRs + GRM: GRB prompt emission from 4 keV to 5 MeV
 - Impact of the optimized follow-up sequence
 - Several well-characterized events at the prompt-to-early afterglow transition in X-rays (MXT) and optical (VT)
 - Crucial role of Swift/XRT and EP/FXT for the X-ray afterglow observation
 - Already high rate of optical afterglow detection and redshift measurement
 - GRB public table (most scientific products) in prep at the French Science Center web site (www.fsc.svom.org)
- SVOM has already established excellent cooperation with many groups: Swift, Einstein Probe, Stargate, NOT/GTC etc, and more agreements are in preparation

many single GRB papers are under review

THE

Backup

SVOM: a unique spectral range to study high-energy transients

SVOM/ECLAIRS: GRB DETECTION RATE – LOCALIZATION – SLEW

ECLAIRS:

- 26 GRBs detected on-board in 8.7 months ~ 36 GRB/year
- % of time with active on-board trigger: 45% (July-Nov. 24) \rightarrow 76% (Dec. 24-March 25)
- Expected rate during scientific operations:
 ~45-50 GRBs detected and localized on-board per year

Field-of-view of the follow-up instruments on board SVOM:

- MXT: 58' x 58' (Swift/XRT: 24'x24')
- VT: 26' x 26'

Automatic slew:

- 54% of GRBs since Launch
- 85% of GRBs since Dec. 24 (lowered threshold)

SVOM FOLLOW-UP OF SWIFT/BAT GRBS

SVOM/VT follow-up of **Swift/BAT GRB250129A** at z = 2.151 (GCN#39071)

LONG GRBS: EARLY AFTERGLOW

GRB250317B at z=3.44

- An event detected only in ECLAIRs mostly in the 5-8 and 8-20 keV bands
- T90 ~ 15 s (4-120 keV)
- Very weak in GRM
- X-ray AG detected by SVOM/MXT Follow-up with Swift/XRT and EP/FXT
- **Optical AG detected by SVOM/VT** Follow-up by many telescopes, including SVOM/VT and SVOM/F-GFT (Colibri)

18.2

18.4

18.6

E 18.8

19.0

19.2

19.4

Delay since T0 (s)

Peculiar behavior: peak@1.6h !

- Redshift: z = 3.44GTC (GCN#39769)
- Nature of this event? X-ray rich GRB? Something else? **Origin of the achromatic** behavior of the AG?

LONG GRBS: EARLY AFTERGLOW

GRB240825A at z = 0.659

- A Swift/BAT & Fermi/GBM+LAT long GRB (T90~4 s in 50-300 keV)
- SVOM/C-GFT: AG detection 66 s after the trigger, follow-up for ~1.5 h
- SVOM/VT (SVOM ToO): detection at 1.1, 13.8 and 28.6 days
- An excellent early multi-λ dataset allowing a detailed modelling of the reverse and forward shock.

Paper on GRB240825A in preparation, led by Chao Wu

Targets of Opportunity (ToOs)

- ToO-NOM: nominal
- ToO-EX: fast (mainly through Beidou)
- ToO-MM: for large error boxes, with a tiling strategy

	ToO-NOM	ToO-EX	ToO-MM
Frequency	Nominal mission : 1/day Extended mission : 5/day	1/month => 1/day	1/week
Priority	Low	Low to Highest	Low to Very High
Upload Delays	< 48h (regular S-band)	< 12h (requested S-band) < 1h (Beidou)	< 12h (requested S-band) < 1h (Beidou)
Duration	Base : 1 orbit => 2.7ks Max : 14 orbits => 38ks SAA optimized	Max : 14 orbits => 38ks	Max : 14 orbits => 38ks SAA optimized
Tiling	No	No	Max tiles / orbit = 5 (close)
Data availability	X-band	X-band	VHF for MXT Position, Photon list, VT Attitude chart X-band
Statistics (6 Dec. 2024)	477	52	1

Multi-messenger astronomy with SVOM

- Search for X-ray / visible counterparts to MM events with MXT and VT
 - Gravitational Wave sources, kilonova / afterglow (depends on the viewing angle), neutrinos, VHE transients
 - Requires a tiling strategy

- Search for NIR / visible counterparts to MM events with the GFTs
 - Search: galaxy targeting within error box
 - Photometric follow up to characterize the counterpart (e.g. kilonova from BNS): requires accurate localization (<30')

A GRB sample with a complete description

• A unique sample of 30-40 GRBs / year with

- Prompt emission over 3 decades (+ optical flux/limit: 16%)
- X-ray and visible / NIR afterglow
- Redshift

	Swift	Fermi	SVOM
Prompt	Poor	Excellent 8 keV -100 GeV	Very Good 4 keV - 5 MeV
Afterglow	Excellent	> 100 MeV for LAT GRBs	Excellent
Redshift	~1/3	Low fraction	~2/3

• Physical mechanisms at work in GRBs

- Nature of GRB progenitors and central engines
- Acceleration, composition, dissipation & radiation processes of the relativistic ejecta
- Diversity of GRBs: event continuum following the collapse of a massive star
 - Low-luminosity GRBs / X-ray rich GRBs / X-ray Flashes and their afterglow
 - GRB/SN connection
- Short GRBs and the merger model
 - GW association / Short GRBs with extended soft emission
- GRBs as a tool to study the distant Universe