The role of internal shocks in prompt
gamma-ray burst emission: implications for
synchrotron radiation and spectral breaks

Gustavo Soares - INAF-OAB

with Lara Nava, Giancarlo Ghirlanda, Om Sharan Salafia

Sexten, 02/07/2025



Jet collides with
ambient medium
(external shock wave)

Very high-energy
. 200477 gamma rays
Colliding shells emit gamma rays - aadfius’ (> 100 GeV)
(internal shock wave model) —

High-energy
gamma rays
Slower

Faster shell
shell

X-rays

Visible light

Radio

Black hole
engine

low-energy (< 0.1 GeV) 1
high-energy (to 100 GeV)
gamma rays

Prompt
emission

Afterglow

NASA Goddard Space Center/ICRAR

Gustavo Soares — Sexten 02/07/2025



Jet collides with
ambient medium
(external shock wave)

Very high-energy
0889~ JAMmMa rays
1 b (> 100 GeV)

== =
~ Colliding shells eMaemMmMa rays

(internal shock WaVERe odel)
\\‘

High-energy
gamma rays

Slower

Faster shell

X-rays

Visible light

Radio

Black hole
engine

low-energy (< /

VS ENAST

emission -

See also slides .by Z. Bosnjak, O. Wistemar

Afterglow

NASA Goddard Space Center/ICRAR

Gustavo Soares — Sexten 02/07/2025



What is the (main) mechanism
responsible for prompt emission
In gamma-ray bursts?




A prompt emission spectral break is consistent with synchrotron
emission, a1 = -2/3, based on Swift and Fermi-GBM data

Oganesyan+ 2017
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A prompt emission spectral break is consistent with synchrotron
emission, ai = -2/3, based on Swift and Fermi-GBM data
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A prompt emission spectral break is consistent with synchrotron
emission, ai = -2/3, based on Swift and Fermi-GBM data
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A prompt emission spectral break is consistent with synchrotron
emission, ai = -2/3, based on Swift and Fermi-GBM data
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Further analysis with Fermi-GBM and Swift
confirms the spectral break at low energies
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GRB 061121

Additional optical observations
consistent with synchrotron
model with a1 = -2/3; rule out or
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GRB 061121

Additional optical observations
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A summary so far...

 GRB observations show an additional spectral break at low energies
 Synchrotron radiation a promising candidate mechanism to explain breaks

« Additional optical data essential to further constrain models, spectral index as = -2/3
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Modeling the emission as the sum of contributions

from forward and reverse shocks
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Synchrotron radiation where both shocks are in fast cooling is ruled out
as It Is unable to reproduce the spectral index inferred from observations

| === fon1:loffilon,a =(1/2:1:1) Fast cooling FS
| == ton1:toffiton4a=(1:1:1) Fast cooling RS
ton,1: toff i ton,a=(2:1:1)
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Fast cooling: yc << Ym VIVo o ~ 1020 Hz GS+ in prep
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What if the forward shock is In the marginally fast
cooling reg

GS+ In prep

=== ton,1: toft 1 ton,4 = (1/2:1:1) Fast cooling FS

== ton,1:tofr1ton,a=(1:1:1) Fast cooling RS
ton,1: toff i ton,a =(2:1:1)

Oganesyan+ 2019 Rahaman+ 2024
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Extrapolating to lower energies indicates RS (fast cooling)
would dominate again, softening the spectrum __ .
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A full parameter exploration could shed light on quantitative
limits of physical parameters and help constrain models

GS+ In prep
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Gu

So, what have we learned?

stavo

GRB observations show an additional spectral break at low energies
Fermi GBM and Swift data show a low-energy slope consistent with a = -2/3

Modeling the spectra as the composition of two synchrotron-dominated
components (forward and reverse shocks) is able to qualitatively describe the low-
energy spectral breaks, but an extrapolation of the spectra towards lower energies
leads to a spectral softening that conflicts with observational data

Ongoing parameter space exploration might hint at quantitative limits of such
kind of modeling

Additional physics likely needed: Inverse Compton effects on electron cooling?
Decaying magnetic fields? Microphysical parameters?
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[ =TI (1 = B2f1),
'35 = I'3I'4(1 — B3P4).




(v/ve)l/3 if v < v,
Jv = Jv max X (v/v) 1?2 if ve < v <vpy
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