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Gravitational Waves: generalities

• Gravitational waves (GWs) were
predicted by Einstein’s Theory of
General Relativity (1916)

• Gravity as a consequence of the
geometry of the spacetime

Spacetime tells matter how to move; matter tells spacetime how to curve. (J. A. Wheeler)
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Gravitational Waves: generalities

• Einstein’s Field Equations:

Rµν −
1

2
Rgµν =

8πG

c4
Tµν

Geometric part (Einstein tensor Gµν) → Geometry of spacetime

Rµν is the Ricci Tensor; R is the scalar curvature; gµν is the metric

Stress-energy part (momentum-energy tensor Tµν) → Matter distribution
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Gravitational Waves: generalities

• Linearized Field Equations:

- In regions of spacetime far from the source (weak gravitational field) we can write the
metrics as:

gµν = ηµν + hµν

where ηµν is the flat, Minkowski metric and hµν << 1 is a small perturbation

- By defining h̄µν = hµν − 1
2hηµν , where h is the trace of hµν and using gauge

invariance, the Einstein Equation becomes:

2hµν = −
16πG

c4
Tµν ,

where 2 = −(1/c2)t+∇2
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Gravitational Waves: generalities

• Vacuum Solutions

In vacuum (e.g., outside a source) Tµν = 0 ⇒ 2hµν = 0

⇒ Solutions are plane waves propagating at the speed of light

→ Gravitational Waves!

In the transverse traceless (TT) Gauge solutions read as

h
TT
µν (t, z) =

h+ hx 0
hx −h+ 0
0 0 0

 cos [ω(t− z/c)]

with h+ and hx refer to the two different polarizations

(Loading Video...) (Loading Video...)
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Gravitational Waves: generalities

• Source Solutions

In presence of matter Tµν 6= 0: the linearized Einstein equations can then be

solved using the appropriate Green function; the solution is

h̄TTij (r, t)=- 2G
c4

1
r

Ïij(r, t)

where r is the distance from the source and Ïij(r, t) is the second time derivative

of the mass quadrupole moment (monopole and dipole disappear)

GW amplitude is proportional to:

•• Ïij(r, t) ⇒ asymmetrical acceleration of masses is needed!

•• 1
r
⇒ the closer the source is, the higher is the amplitude of the GW signal

•• 2G
c4
∼ 10−45 N−1 ⇒ Only astrophysical sources can produce detectable GWs!
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Classes of GW sources
Transient GW sources

Which are the astrophysical sources of GWs?

Transients

Compact binary coalescences

Burst

Non transients

Continuous

Stochastic
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Classes of GW sources
Transient GW sources

High frequency (10-1000 Hz) GW transient sources

Coalescence of binary systems of Neutron Stars (NSs) and/or Black Holes (BHs)

• Accurate modeling of the GW signals → Matched
filter modeled searches

• Energy emitted in GWs (NS-NS): ∼ 10−2 M�c2

Burst: Core collapse of massive stars and Isolated neutron stars

• The modeling of the GW signal is
complicated → Unmodeled searches

• Energy emitted in GWs:

∼ 10−11- 10−7 M�c2 for core collapse∗

∼ 10−16- 10−6 M�c2 for isolated NSs

∗higher values are suggested by models exploring “extreme” GW emission
scenarios
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Compact binary coalescences
Example: GW190521

Modeling the GW emission: compact binary coalescences
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GW emission from compact binary coalescences

Emission of GWs implies loss of orbital energy

⇒ the binary shrinks while emitting GWs untill it merges

Figure from link
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GW emission from compact binary coalescences

GWs carry information on the key source parameters

h+(t) = AGW (t)(1 + cos2 i) cosφGW (t)

hx(t) = −2AGW (t) cos i sinφGW (t)

• Extrinsic

Sky position, luminosity distance, orbital
orientation...

• Intrinsic

masses, spins ...
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The masses

• GW frequency (fGW) is twice the
orbital frequency (forb)

• fGW increases with time

• From frequency evolution we can
infer the masses of the two
compact objects:

Figure from link

• Inspiral: the evolution of frequency with time is characterized by the chirp mass

Mc =
(m1m2)3/5

(m1 +m2)1/5
∝
(
f
−11/3
GW

˙fGW

)3/5
• Maximum amplitude of the GW signal: frequency of the innermost stable orbit

fISCO ∝
1

M

Important to understand the nature of the binary system!
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The effective spins

With GWs we can estimate two “effective spins”: the effective inspiral spin (χeff )

and the effective precession spin (χp)

χeff =
c

GM

(
S1

m1

+
S2

m2

)
L̂

χp =
c

B1Gm2
1

max (B1S1⊥, B2S2⊥) ;

B1 = 2+3q/2, B2 = 2+3/(2q), q =
m2

m1

• χeff quantifies the total spin parallel to the binary’s orbital angular momentum

(χeff <0 implies at least one component spin tilted by θ > 90◦ with respect to L)

• χp depends on the component of the spins perpendicular to the binary’s orbital angular
momentum

(χp 6= 0 implies spin-induced general relativistic precession of the orbital plane)
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The spin

The spin orientations can help us to discriminate

between different formation channels

Isolated binary in galactic fields Dynamical interactions in clusters

Isolated binary:

Spins preferentially aligned with
the binary orbital angular
momentum

Cluster binary:

Isotropic spin orientations
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Example: GW190521

• GW event observed by the two LIGO
detectors and Virgo

• m1: 85+21
−14 M�, m2: 66+17

−18 M�

• The primary falls in the mass gap by
(pulsational) pair-instability SN

⇒ Challenge for stellar evolution

• Isolated binary evolution is disfavoured

Dynamical scenario?

LVC 2020, PRL, 125, 101102

LVC 2020, ApJL, 900, 13

16 / 32



Introduction to GWs
GW sources

Modeling the GW emission
Conclusions

Compact binary coalescences
Example: GW190521

GW190521: the spin

χi =
cSi

Gm2
i

Dimensionless spin

θi : Tilt angle

Mild evidence for large spins nearly in the orbital plane
... dynamical origin of the system?

LVK Collaboration 2020, PRL, 125, 101102

LVK Collaboration 2020, ApJL, 900, 13
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Dynamical scenarios for GW190521

Example: hierarchical mergers in AGN disks

Several studies predict EM emission in association with a BBH merger when it take
place in the disks of AGNs (e.g. Bartos et al. 2017, McKernan et al. 2019)
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Example: GW190521

GW190521: an EM counterpart?

The Zwicky Transient Facility (ZTF) detected a candidate optical counterpart in AGN
J124942.3+344929

• GW sky localization: 765 deg2

(90% C.R.)

• ZTF observed 48% of the 90%
C.R. of the GW skymap

• An EM flare observed ∼ 34 days
after the GW event

• It is consistent with expectations
for a BBH merger in the accretion
disk of an AGN (see McKernan et
al. 2019, ApJL, 884, 50)

Graham et al. 2020, PRL, 124, 251102
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Common origin of the two transients seems to be preferred with respect to random
coincidence (Morton et al. 2023; see, however, Ashton et al. 2021, Palmese et al.
2021)
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Conclusions

Gravitational Waves:

• Predicted by Einstein in 1916 in
the theory of General Relativity

• Many astrophysical sources can
emit GWs

• Accurate modeling for coalescing
compact binaries

⇒ key tool to constrain key
parameters of these sources

• Complicate modeling for other
sources (supernovae ...)

⇒ future detections could provide
valuable insights into these events

GWs are revolutionizing our way to study the Universe...

stay tuned for new discoveries!
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GW emission from core collapse of massive stars

• Massive stars: stars with masses
> 8 M�

• Core-collapsing massive stars at
their final evolutionary stage are
expected to emit GWs if there is
some asymmetry in the stellar
envelope ejection phase

• Large uncertainties on the
collapsing phase ⇒ the amount of
GW-released energy and the
expected GW waveforms are highly
uncertain

Figure from Logue et al. 2012, PRD, 86, 044023
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GW emission from Isolated neutron stars

A class of isolated NSs that can emit transient GW signals is represented by magnetars

• Magnetars are slow spinning (P ∼ 2 -12 s),
highly magnetized (B ∼ 1013 - 1015 G)
isolated NSs

• Occasionally emit flares of soft gamma
rays, with energies up to ∼ 1047 erg (giant
flares)

• Thought to be associated with cracking of
the crust (“starquake”) or magnetic
reconnection

• Some of the energy of the cracking event
may excite non-radial oscillation modes in
the star, which radiate GWs (e.g. Corsi &
Owen 2011)

Credit: ESO/L. Calçada (CC BY 4.0)
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Continuous GW emission from Isolated NSs

• NSs with non-axisymmetric
deformation emit continuous GWs

• Typical amplitude:

h0 =
4π2G

c4
εIzzf2GW

d
≈ 1.06× 10−26

( ε

10−6

)
×
(

Izz

1038 kg m2

)(
fGW

100 Hz

)2 (1 kpc

d

)
,

where

- d is the distance from the detector to the source

- fGW is the GW frequency = 2 ×frot

- Izz is the moment of inertia with respect to rotation axis

- ε is the ellipticity (or asymmetry of the star): (Ixx − Iyy)/Izz
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Stochastic GW emission

• It could be generated by the superposition from various unresolved astrophysical
and cosmological sources, such as, e.g.:

- Core-collapse supernovae

- Compact binary coalescences

- Cosmic strings

- GWs from inflation

• It cannot be characterized by a waveform, but only through statistical methods

Image credit: A. Ricciardone
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GW emission from compact binary coalescences

Figure from Antelis and Moreno 2017
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Example - GW150914: how do we know this is a BBH?

LVC 2016, PRL, 116, 061102

• Estimating fGW and ˙fGW from the
data we have Mc ∼30 M�

⇒M = m1 +m2 & 70 M�

⇒ NS-NS systems cannot have
M ≥ 70 M�

• From the data we have fISCO=75 Hz

• BH-NS systems can have the estimated
value of Mc if the BH has at least

m1=1000 M� ⇒ M > 1000 M�

⇒ BH-NS systems would merge at
fISCO much lower than 75 Hz
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The BH population with EM observations

What did we know about stellar-mass BHs before GW observations?

• Our knowledge of stellar-mass BHs
was limited to electromagnetic
(EM) observations of X-ray
binaries

• ∼ 20 stellar-origin BHs with
dynamical mass measure

• Measured masses between 5 M�
and 20 M�

• No BBHs or BH-NSs known

Clark, J.S. et al. 2002, A&A 392, 909
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The BH population with GW observations: O1

• BBHs can form in nature and merge
within a Hubble time

• First direct evidences for “heavy” stellar
mass BHs ( > 25 M�)

• From the masses we can infer
information on the environment:

→ events like GW150914 most likely
formed in low-metallicity environment
(≤ 0.5 Z�)

• BBH merger rate: 9 - 240 Gpc−3 yr−1

LVT151012 was later re-labeled as GW151012

LVK Collaboration 2016, ApJL, 818, 22
LVK Collaboration 2016, PRX, 6, 041015

LVK Collaboration 2017, PRL 118, 221101
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The BH population with GW observations: O1 + O2 + O3

LVK Collaboration 2021, arXiv:2111.03606
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Population studies

From single events to a population

• Individual GW events can reveal the properties of unique single sources, but ...

• ... a population of events is needed to shed light on how these systems form and
evolve throughout the Universe

→ the statistical distribution of BH source properties such as their mass,
spin and redshift can be used to probe the astrophysics of BBH formation and
evolution
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The population of BBH merging systems

Primary BH mass distribution

• BH mass distribution is non-uniform, with
overdensities at BH masses of 10 M� and
35 M�; tail up to 80 M�

BBH merger rate

• BBH merger rate is observed
to increase with redshift

LVK Collaboration 2023, PRX, 13, 011048; LVC 2021, ApJL, 913, L7
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