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• Disclaimer: this talk discusses measurement-informed models :)

Outline

• State-of-the-art of UHECR measurements 

• The UHECR astrophysical picture emerging from data 

• Requirements from measurements and how to model a UHECR source 

• Example of modelling of spectral shape and mass composition 

• Sources emitting nuclei 

• What do we learn about UHECRs from other messengers 

• Summary 

• How multimessenger approaches could complete the UHECR picture 
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State-of-the-art of the latest UHECR measurements

• Features in the energy spectrum 

• Changes in mass composition 

• Extragalactic origin from 
anisotropy signal 

The Pierre Auger Collab. ICRC23

• Coherent results with non-
observation of cosmogenic particles

• Many results about fundamental interactions and non-standard physics!
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The extremely energetic cosmic ray observed by Telescope Array

• May 27th, 2021, estimated energy: 244 EeV 

• Back-tracked directions 
assuming two models of 
the Milky Way regular 
magnetic field, for four primaries 

• The closest object to the proton backtracked 
direction in gamma rays is the active galaxy 
PKS 1717+177 

• Distance of 600 Mpc -> too large!

The Telescope Array Collab. Science 2023

Globus et al, ApJ 2023 • Maximum source distance for this energy: 8-50 Mpc (the range 
reflects the uncertainty in the energy assignment); see Unger & 
Farrar ApJL 2023 

• Radio galaxies satisfying the luminosity criteria are not present in 
the localisation volume; no starburst galaxies within the source 
direction  

• Transient event in an otherwise undistinguished galaxy? 

• Ultra-heavy nucleus? 



THE UHECR ASTROPHYSICAL PICTURE FROM THE  
STUDY OF DIFFUSE FLUXES
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Berezinsky et al. PRD2006• Dip model: UHECR spectrum features can be explained with energy losses of 
protons travelling through the extragalactic space 

• Suppression of the flux due to photo-pion production (GZK effect)

UHECRs are not protons…
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Berezinsky et al. PRD2006

Ankle 
Instep  

Suppression 

The Pierre Auger Collab. PRD2020

• Dip model: UHECR spectrum features can be explained with energy losses of 
protons travelling through the extragalactic space 

• Suppression of the flux due to photo-pion production (GZK effect)

• The current measured spectrum is not well reproduced within the dip model 

• New feature: instep 

• Suppression at lower energy than what expected from pure GZK 

• Ankle too pronounced 

• And… the mass composition is “heavy"!

UHECRs are not protons…
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• Independently of the scenario, decreasing fluctuations of 
Xmax can be found corresponding to limited mixing of 
spectra of different nuclear species at HE, meaning   

• HE: hard spectra + low rigidity cutoff 

• LE: soft spectra + less constrainable rigidity

Different contributions needed at LE and HE: 

• Different populations of sources Aloisio et al, JCAP 2014; Mollerach & Roulet PRD 2020; Das et al, 
Eur.Phys.J. 2021; The Pierre Auger Collab. JCAP 2023 

• One population of sources (softer spectrum of protons due to in-source interactions) Unger et al. 
PRD 2015 

Contribution from heavier particles below the ankle needed to account for mixed composition

State-of-the-art: astrophysical scenarios
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• Independently of the scenario, decreasing fluctuations of 
Xmax can be found corresponding to limited mixing of 
spectra of different nuclear species at HE, meaning   

• HE: hard spectra + low rigidity cutoff 

• LE: soft spectra + less constrainable rigidity

Different contributions needed at LE and HE: 

• Different populations of sources Aloisio et al, JCAP 2014; Mollerach & Roulet PRD 2020; Das et al, 
Eur.Phys.J. 2021; The Pierre Auger Collab. JCAP 2023 

• One population of sources (softer spectrum of protons due to in-source interactions) Unger et al. 
PRD 2015 

Contribution from heavier particles below the ankle needed to account for mixed composition

In terms of interpretation the 
suppression,  

• Propagation effect 

• Indication of source power 

Not pure 
GZK !

State-of-the-art: astrophysical scenarios
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Requirements about maximum energy and emissivity

Alves Batista et al, Front.Astron.Space Sci. 2019
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• Hillas condition & emissivity requirements 

• Pure mass composition discarded by mass composition (and 
spectrum) data  

• Not pure GZK responsible for flux suppression 

• Different spectral shapes predicted for HE and LE components 

• In-source interactions, escape effects? Different 
populations? Magnetic effects (see The Auger Collab. JCAP 
2024) ?  

• Peters cycle at the sources (but also Lorentz-factor ordering of  
of the spectra at the emission is quite ok, see for instance 
Muzio et al. PRD 2024) and Lorentz-factor ordering at Earth 

• Almost identical spectral shape at the emission from sources, 
see Ehlert et al. PRD 2023 

• Absence of declination dependence of the spectrum features, 
see The Auger Collab. arXiv:2506.11688  

• Narrow range of rigidity at Earth

Summary of the requirements from measurements

Some of these requirements are 
discussed in the next slides…

• Many results on arrival directions, see The 
Auger Collab. ApJ 2022 
• At E > 8 EeV indications of extragalactic 

origin from the dipole direction 
• Hints of correlation with starburst galaxy 

sample 
• Overdensity in the Centaurus region

• Some pieces of information collected from measurements -> requirements for UHECR source characteristics



ABOUT THE SPECTRAL SHAPE (AND MASS COMPOSITION) 
AT THE ESCAPE FROM A UHECR SOURCE 
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A toy-model to investigate the spectral shape and mass 
composition at the escape of a source environment

• Accelerator within an environment where 
cosmic rays can be confined by magnetic fields 
and interact with radiation and matter fields 

• A cosmic ray either  

• escapes without changing energy,  

• or interacts one or more times before 
escaping;  

• Typical lengths are independent of position in 
the source environment and depend only on E, 
A, Z

Unger et al, PRD 2015
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A toy-model to investigate the spectral shape and mass 
composition at the escape of a source environment

• Accelerator within an environment where 
cosmic rays can be confined by magnetic fields 
and interact with radiation and matter fields 

• A cosmic ray either  

• escapes without changing energy,  

• or interacts one or more times before 
escaping;  

• Typical lengths are independent of position in 
the source environment and depend only on E, 
A, Z

τ = (τ−1
esc + τ−1

int )−1

ηesc = (1 + τesc/τint)−1

ηint = 1 − ηesc

Particles escaping without 
interacting

Number of particles of a certain 
species is decreasing 
exponentially with time 

Unger et al, PRD 2015
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A toy-model to investigate the spectral shape and mass 
composition at the escape of a source environment

• Accelerator within an environment where 
cosmic rays can be confined by magnetic fields 
and interact with radiation and matter fields 

• A cosmic ray either  

• escapes without changing energy,  

• or interacts one or more times before 
escaping;  

• Typical lengths are independent of position in 
the source environment and depend only on E, 
A, Z

τ = (τ−1
esc + τ−1

int )−1

ηesc = (1 + τesc/τint)−1

ηint = 1 − ηesc

τesc = a(E/E0)δ τint = b(E/E0)ζ

ηesc = (1 + R0(E/E0)δ−ζ)−1

δ > ζ δ < ζ

Particles escaping without 
interacting

Number of particles of a certain 
species is decreasing 
exponentially with time 

Only the ratio between escape 
and interaction is relevant

Low-pass filter High-pass filterUnger et al, PRD 2015
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A toy-model to investigate the spectral shape and mass 
composition at the escape of a source environment
• Black body or power-law radiation field (peaked spectrum) 

• Photopion production and/or photo-disintegration (resonances) 

dNint

dt
=

c
2Γ2 ∫

∞

ε′ th

σ(ε′ )ε′ ∫
+∞

ε′ /2Γ

nγ(ε)
ε2

dεdε′ ε′ ≈ εΓ
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A toy-model to investigate the spectral shape and mass 
composition at the escape of a source environment
• Black body or power-law radiation field (peaked spectrum) 

• Photopion production and/or photo-disintegration (resonances) 

• The high-pass filter scenario leads naturally to an ankle-like feature separating 
the nucleonic fragments from the remaining nuclei

Unger et al, PRD 2015

• Low CR energy -> high energy of the photon (above the peak) needed to reach 
the resonance energy -> steep spectrum -> time decreases  

• High CR energy -> low energy of the photon (below the peak) needed -> time 
increases 

• The lower the energy, the more time the nuclei have to interact before escaping 

• hardening of the spectrum and  

• lightening of the composition

dNint

dt
=

c
2Γ2 ∫

∞

ε′ th

σ(ε′ )ε′ ∫
+∞

ε′ /2Γ

nγ(ε)
ε2

dεdε′ ε′ ≈ εΓ
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Source-propagation model 

Coupled system of equations, arising because:

Injection of CRs (accelerated spectrum) 

Production of secondary cosmic rays  

Qi(E)
Qj→i(E)

∂Ni(E)
∂t

=
∂

∂E
(−b(E)Ni(E)) −

Ni(E)
tesc

+ Qji(E)

b(E) = E/tloss

Qji = Qi(E) + Qj→i(E)

Q(E, z) = Q0 ( E
E0 )

−γ

exp (−
E

Emax ) f(z)

Q0 =
L

∫ ∞
E0

dE′ E′ ( E′ 

E0 )
−γ

exp (− E′ 

Emax )

• Accelerated spectrum Q in the source 
• Interactions and escape in the source environment 

• Spectrum at the escape -> injection in the extragalactic 
space 
• Interactions in the extragalactic space 

• Spectrum at detection 
• Secondary messengers can be computed (from source 

and from extragalactic propagation)



19

Source-propagation model 

Coupled system of equations, arising because:

Injection of CRs (accelerated spectrum) 

Production of secondary cosmic rays  

Qi(E)
Qj→i(E)

∂Ni(E)
∂t

=
∂

∂E
(−b(E)Ni(E)) −

Ni(E)
tesc

+ Qji(E)

b(E) = E/tloss

Qji = Qi(E) + Qj→i(E)

LCR = ∫ QCR(E)E dE ≈ η Lγ

Multimessenger connections: 

Lν ≈ fπLCR ≈ fπη Lγ

η baryonic loading, unknown

Corresponding quantities for transient sources can be also described

• Accelerated spectrum Q in the source 
• Interactions and escape in the source environment 

• Spectrum at the escape -> injection in the extragalactic 
space 
• Interactions in the extragalactic space 

• Spectrum at detection 
• Secondary messengers can be computed (from source 

and from extragalactic propagation)

Q(E, z) = Q0 ( E
E0 )

−γ

exp (−
E

Emax ) f(z)

Q0 =
L

∫ ∞
E0

dE′ E′ ( E′ 

E0 )
−γ

exp (− E′ 

Emax )
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Source-propagation model 

Coupled system of equations, arising because:

Injection of CRs (accelerated spectrum) 

Production of secondary cosmic rays  

Qi(E)
Qj→i(E)

∂Ni(E)
∂t

=
∂

∂E
(−b(E)Ni(E)) −

Ni(E)
tesc

+ Qji(E)

b(E) = E/tloss

Qji = Qi(E) + Qj→i(E)

• Accelerated spectrum Q in the source 
• Interactions and escape in the source environment 

• Spectrum at the escape -> injection in the extragalactic 
space 
• Interactions in the extragalactic space 

• Spectrum at detection 
• Secondary messengers can be computed (from source 

and from extragalactic propagation)

• Cosmic Ray Injection 
• Mass of primary particles 
• Maximum energy of CR spectra 
• Slope of CR spectra 
• Source evolution 
• Maximum distance of sources 

Not possible to be constrained only with UHECRs! Multimessenger 
approach needed; see for example: 
• Heinze, DB, Bustamante & Winter, ApJ 2016 
• Alves Batista, de Almeida, Lago & Kotera, JCAP 2019 
• Heinze, Fedynitch, DB & Winter, ApJ 2019 
• van Vliet, Alves Batista & Hoerandel, PRD 2019  
• The Auger Collab. JCAP 2023; update in ICRC2023 
• IceCube Collab. arxiv:2502.01963 
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Application to Starburst galaxies
• Example from Condorelli, DB, Peretti & Petrera PRD 2023: CR interactions in starburst galaxies

dNint

dt
=

c
2Γ2 ∫

∞

ε′ th

σ(ε′ )ε′ ∫
+∞

ε′ /2Γ

nγ(ε)
ε2

dεdε′ 

Characteristic time for photo-meson production and 
photodisintegration

• Radiation field (or matter density): 
• Intensity -> increase interaction rate 
• Min and max energy -> define range of interaction rate 
• Power law, energy break (if broken power law) or energy 

peak (if black-body radiation) -> change shape and/or shift 
interaction rate 

• Size -> interplay with escape/diffusion

ε′ ≈ εΓ

OPT

IR
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• Example from Condorelli, DB, Peretti & Petrera PRD 2023: CR interactions in starburst galaxies

• Radiation field (or matter density): 
• Intensity -> increase interaction rate 
• Min and max energy -> define range of interaction rate 
• Power law, energy break (if broken power law) or energy 

peak (if black-body radiation) -> change shape and/or shift 
interaction rate 

• Size -> interplay with escape/diffusion

Characteristic time for diffusion compared to spallation and 
photonuclear interactions

tadv =
R
vW

tD =
R2

D(E)
tesc = min[tadv, tD]

Application to Starburst galaxies

Maximum energy is not just defined by acceleration!
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Effect of increased 
interaction efficiency  

Effect of change of CR 
spectrum 

• Denser photon field  
• heavier nuclei interact more efficiently 
• Lighter nuclei are more abundant 

• Harder spectrum at acceleration 
• Larger number of particles at high energy with 

respect to low energy 

Condorelli, DB, Peretti & Petrera PRD 2023

Application to Starburst galaxies

• Extragalactic propagation computed with:

• SimProp, Aloisio, DB, di Matteo, Grillo, Petrera & Salamida, JCAP 2017 

• CRPropa, R. Alves Batista et al, JCAP 2022
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Effect of increased 
interaction efficiency  

Effect of change of CR 
spectrum 

Neutrinos computed from in-source interactions and 
extragalactic propagation 

The importance of a multimessenger approach, within a source-model 
scenario: 
• The cosmogenic neutrinos cannot reach the measurement level  
• The contribution of in-source interactions can be investigated 

• the intensity of the photon field can be related to the neutrino flux, as 
well as the sub-ankle nucleons 

• The interactions responsible for the neutrino flux can be distinguished

Condorelli, DB, Peretti & Petrera PRD 2023

Application to Starburst galaxies + neutrinos



ABOUT THE NUCLEAR SPECIES 
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• Seed galactic CRs with energies of 1017  eV that 
penetrate the jet sideways receive a “one-shot” boost of 
a factor of Γ2 in energy (Caprioli ApJL 2015)  

• Chemical composition of Galactic-like CRs?

Example: AGN jetsExample: starburst galaxies

• High level of star formation and supernova explosions -> 
collective wind -> acceleration 

• Acceleration to UHE might be possible (Anchordoqui PRD 
2018), but high gas density and turbulence -> calorimetric 
behaviour (secondary particles, see for instance Peretti et al 
MNRAS 2018) 

• Signal of correlation of SBGs with the highest energy CR 
events (The Auger Collab ApJL 2018)



Binary-neutron-star mergers
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• Acceleration site in BNS merger: short gamma-ray burst generated thanks to the formation of 
the black hole with relativistic jet powered by accreting material (see Blasi et al ApJL 2000; 
Arons ApJ 2003; Kotera et al JCAP 2015 for discussion about survival of nuclei) 

• Alternative acceleration site in the BNS: a fraction of the ejected material can fall back to the 
central compact object produced after the merger. This fallback outflow encounters the earlier 
ejected mass shell producing a shock wave where particles can be accelerated (see Rodrigues, 
Biehl, DB & Taylor Astropart. Phys. 2019 for discussion on the characteristics of magnetic field 
and Decoene et al. JCAP 2020; Rossoni, DB & Sigl JCAP 2025 for the source model)

Additional info about UHECR production (see Farrar PRL 2025):  

• the merger of two neutron stars with 1.35 solar mass creates a pair 
of powerful back-to-back jets satisfying the Hillas criterion and 
Poynting luminosity requirement 

• jets of BNS mergers are generated by a gravitationally-driven 
dynamo and thus are nearly identical due to the narrow range of 
BNS masses -> narrow rigidity for emitted UHECRs 

• The Amaterasu event could be explained with non-exotic 
scenarios, for a ultra-heavy nucleus

• Thermal photon field -> due to the nuclear decay of the 
unstable species synthesized in the ejecta by the merger 

• Non-thermal photon field: synchrotron emission 
• Modelling inspired by the electromagnetic counterpart of 

GW170817



Binary-neutron-star mergers
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• Acceleration site in BNS merger: short gamma-ray burst generated thanks to the formation of 
the black hole with relativistic jet powered by accreting material (see Blasi et al ApJL 2000; 
Arons ApJ 2003; Kotera et al JCAP 2015 for discussion about survival of nuclei) 

• Alternative acceleration site in the BNS: a fraction of the ejected material can fall back to the 
central compact object produced after the merger. This fallback outflow encounters the earlier 
ejected mass shell producing a shock wave where particles can be accelerated (see Rodrigues, 
Biehl, DB & Taylor Astropart. Phys. 2019 for discussion on the characteristics of magnetic field 
and Decoene et al. JCAP 2020; Rossoni, DB & Sigl JCAP 2025 for the source model)

Additional info about UHECR production (see Farrar PRL 2025):  

• the merger of two neutron stars with 1.35 solar mass creates a pair 
of powerful back-to-back jets satisfying the Hillas criterion and 
Poynting luminosity requirement 

• jets of BNS mergers are generated by a gravitationally-driven 
dynamo and thus are nearly identical due to the narrow range of 
BNS masses -> narrow rigidity for emitted UHECRs 

• The Amaterasu event could be explained with non-exotic 
scenarios, for a ultra-heavy nucleus

• Thermal photon field -> due to the nuclear decay of the 
unstable species synthesized in the ejecta by the merger 

• Non-thermal photon field: synchrotron emission 
• Modelling inspired by the electromagnetic counterpart of 

GW170817

Alves Batista et al, 
Front.Astron.Space 
Sci. 2019



WHAT CAN WE LEARN ABOUT UHECRS FROM OTHER 
MESSENGERS 

29
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Gao et al, Nature Astron. 2019; Cerruti et al MNRAS2019

Pure leptonic model reproduces the SED 
of the source  

• No neutrinos predicted

Hadronic model reproduces the second 
bump and the neutrino 

• Overshoots the X-ray flux

Lepto-hadronic model

Modelling TXS0506+056 Active Galactic Nuclei

• In-source interactions modeling for the blazar sequence: see for instance Murase et al PRD 2014; Rodrigues, Fedynitch, Gao, DB & 
Winter ApJ 2018 

• For the modeling of the spectral energy distribution of jetted active galactic nuclei see Cerruti et al. arxiv:2411.14218 (comparison of 5 
hadronic codes in the market) 



Active Galactic Nuclei
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• No intense gamma-ray flux  

• X-ray emission associated to corona 
(very hot (T ≈ 109 K) electrons 
inverse Compton scatter the UV 
photons from the accretion disc 
thereby producing X-ray photons), 
as also in Murase et al PRL2020

• 79 neutrino IceCube events associated to NGC1068: Seyfert II AGN 

• Neutrino observations cannot distinguish the emission zone (as well as for the other 
associations) 

Padovani et al, Nature Astron. 2024; A&A 2024

measured

derived
derived, with some 

assumptions



Active Galactic Nuclei
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• No intense gamma-ray flux  

• X-ray emission associated to corona 
(very hot (T ≈ 109 K) electrons 
inverse Compton scatter the UV 
photons from the accretion disc 
thereby producing X-ray photons), 
as also in Murase et al PRL2020

• 79 neutrino IceCube events associated to NGC1068: Seyfert II AGN 

• Neutrino observations cannot distinguish the emission zone (as well as for the other 
associations) 

Padovani et al, Nature Astron. 2024; A&A 2024

measured

derived
derived, with some 

assumptions

Padovani et al, A&A 2024

Non-jetted AGN

Jetted
NGC1068



Active Galactic Nuclei
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Ehlert et al. MNRAS 2025 
Lamastra et al. A&A 2018

• AGN not only accrete matter to sustain their activity, but show also large-scale outflows/winds (ultra-
fast outflow, UFO) of matter driven by the central BH, which are both less collimated (wide-angle) and 
slower than relativistic jets 

• Velocities ranging from ∼ 102 km s-1, typical of warm absorbers, up to semi-relativistic speeds ∼ 105 km 
s-1 for ultra fast outflows, and are observed at different spatial scales (sub-pc to kpc) and ionization 
states 

• The hot corona could contribute to low-energy neutrinos, while at higher energy the contribution from 
UFOs could emerge (as in the sub-ankle region for UHECRs)

F. Oikonomou 
@ UHECR2024 



SUMMARY

34
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• Simple phenomenological models, based on current 
UHECR data, can provide a basic description of UHECR 
data in terms of astrophysical scenarios  

• This is consistent with what we can deduce from the 
current limits on other messengers 

• We can build source-propagation model and refine 
the basic scenario suggested by measurements 

• We still miss a clear understanding of the acceleration 
mechanisms with which particles reach UHEs 

• Thanks to current (and future) experimental 
advancements,  

• we can start refining the basic UHECR scenarios 

• Main expectation from UHECR observatory 
upgrades -> improve the understanding of the 
mass composition, crucial for UHECR and several 
multimessenger aspects

Summary
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Summary

New electronics

Scintillators

Underground muon 
detectors 

High-dynamic 
range PMTs 

Radio upgradeTowards multi-hybrid 
observations of 
extensive air showers 
with AugerPrime!• Simple phenomenological models, based on current 

UHECR data, can provide a basic description of UHECR 
data in terms of astrophysical scenarios  

• This is consistent with what we can deduce from the 
current limits on other messengers 

• We can build source-propagation model and refine 
the basic scenario suggested by measurements 

• We still miss a clear understanding of the acceleration 
mechanisms with which particles reach UHEs 

• Thanks to current (and future) experimental 
advancements,  

• we can start refining the basic UHECR scenarios 

• Main expectation from UHECR observatory 
upgrades -> improve the understanding of the 
mass composition, crucial for UHECR and several 
multimessenger aspects
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CR-neutrino-photon connection to be explored beyond simplistic scenario 
of similar intensity in different messengers 

• Cosmogenic vs astrophysical neutrinos

• Neutrino energy -> maximum rigidity of the CR particle 

• Cosmogenic neutrino -> maximum rigidity of the CR at the escape 

• Astrophysical neutrino -> maximum rigidity of the CR in the 
source (if the calorimetric condition is satisfied, no direct 
correspondence of neutrino-CR flux) 

• Neutrino intensity -> spectral index, CR nuclear species, spectral index 
and maximum energy 

• Common origin of different messengers

• What about the allowed fraction of protons in UHECRs?  

• Emerging evidence, from source-propagation models, that UHE neutrinos 
(from sources) are linked to sub-ankle protons 

KM3NeT Collab. arxiv:2502.08173

Ahlers EPJ Web Conf 2019

 corresponding energy of a proton: ankle energy

Summary with a multimessenger perspective


