Leptonic modeling of blazars A brief sketch and some new clues

F. Tavechio INAF-OABrera

ADVANCES IN MODELING HIGH-ENERGY ASTROPHYSICAL SOURCES

Sexten - 1/7/2025

The heart of a jetted AGN

Blazars: relativistic jets pointing at us

Blazars: relativistic jets pointing at us

(Special) relativity at work

Jet physics

...

Particle acceleration Plasma and B-field physics Reconnection vs shock Hadronic vs leptonic emission Location of emission region

Propagation effects

Extragalactic background light Intergalactic magnetic field Hadronic beams LIV and ALPs-induced effects and other anomalies

The spectral energy distribution

Important observational effort

Abdo et al. 2011

Blazars: basic phenomenology

Blazars occur in two flavors:

FSRQ: high power, thermal optical components (broad lines)

BL Lacs: low power, almost purely non-thermal components

The "blazar sequence"

Fossati et al. 1998 Donato et al. 2002 Ghisellini et al. 2009

But see several papers by Giommi & Padovani

Blazars in a nutshell

The full problem

E.g. Blandford et al. 2019 Matthews et al. 2020

2×105

Time [s from $T_0 = 11987.0 (TJD)$]

4×10⁵

6×10⁵

0

Additional standard assumptions:

-Magnetic field is tangled (turbulent)

-Leptons have an isotropic pitch angle distribution But see Sobacchi et al. 2020, 2021

-For BL Lacs the only relevant photons for IC are the synchrotron ones

Hadrons not relevant for the emission (but not for energetics!)

In principle, in this simple version of the Synchrotron-Self Compton (SSC) model, all parameters can be constrained by quantities available from observations:

Application: BL Lacs

R

(9)

1

3.6

K

δ

(10)

25

14

Application: BL Lacs

Tavecchio et al. 2010

An improved model

Structured jets in BL Lacs

Simulations predict spine-layer structure

Entrainment/instability e.g. Rossi et al. 2008 Acceleration process e.g. McKinney 2006

Limb brightening Mkn 501, Mkn 421, M87, NGC 1275 Laing 1996 Giroletti et al. 2004 Piner & Edwards 2014 Pushkarev et al. 2005 Clausen-Brown 2011 Murphy et al. 2013

Unification requires velocity structures

Chiaberge et al. 2000 Meyer et al. Sbarrato et al. 2014

An improved model

 $\Gamma_{\rm rel} = \Gamma_{\rm s} \Gamma_{\rm l} (1 - \beta_{\rm s} \beta_{\rm l})$

 $U' \simeq U\Gamma_{\rm rel}^2$

 \star The spine "sees" an enhanced u_{rad} coming from the layer

Rates of processes involving soft photons are enhanced w.r.t. to the one-zone model

Pause: synchrotron polarization

Magnetic domains with different orientation (e.g. turbulence) determine a lower ⊓

Some new clues from polarimetry

IXPE pointed several HBL during the first two years, usually in low/quiescent flux states, with consistent results.

Strong "chromaticity" of ⊓

 $\Pi_X > \Pi_O$

XDE

Imaging X-Ray Polarimetry Explorer

Hints from IXPE

Hints from IXPE

Stratified shock: a toy model

Stratified shock: a toy model

Stratified shock: a toy model

Effective "two zone" model

Hints from IXPE

Shocks & energy stratification? Not necessarily!

Time dependent models

Time dependent models

Time dependent models

Final thoughts

Jets are very complex systems but ...

(Leptonic)One zone models are surprisingly successful!

We can infer clues one particle acceleration, evolution etc...

Polarimetric measurements suggest that more complexity must be added

Not clear which kind of scenario ...

Extreme accelerators?

> Why weakly/slowly variable?

Application: BL Lacs

UHECR IceCube Neutrinos

Hadrons are accelerated to very-high and ultra-high energy somewhere in the extragalactic space

Jets offer ideal conditions (B, radius, power)

В

Lepto-hadronic models

Cerruti et al. 2015

Lepto-hadronic models

MAGIC Coll. 2018

Lepto-hadronic models

Zech et al. 2017

PKS 2155-304

Scenario for "extreme Bl Lacs"

Extreme BL Lacs

after Costamante et al. 2001

Bonnoli et al. 2015

Tavecchio et al. 2019

Tavecchio et al. 2019

Variability

Quasi-stationary SED

	R15	В			K		
Observation	(cm)	(G)	δ	Ybreak	(cm ⁻³)	n ₁	n_2
1997 April 7	1.9	0.32	10	1.1 × 10 ⁵	750	1.5	3
1997 April 16	1.9	0.32	10	7×10^{5}	10 ³	1.55	3

Tavecchio et al. 2001

Quasi-stationary SED

Quasi-stationary SED

56087 M (62.5/12)

56090 V (32.7/10)

56094 M (18.0/10)

56095 M (16.8/10)

1.64

2.21

2.98

2.25

1.70

0.91

0.50

0.84

2.91

2.83

2.97

2.73

21.30

10.10

7.04

6.78

1398

520

199

336

1.89

1.86

2.00

1.68

Producing the jet

McKinney, Tchekhovskoy, and Blandford 2012

FSRQs: the "canonical" scenario

Dermer et al. 2009 Ghisellini, FT 2009 Sikora et al. 2009

Ghisellini and Tavecchio 2009

4C454.3

1ES 1510-089

Within the Torus

Beyond the Torus

Acciari et al. 2018

(Special) relativity at work

A wealth of astrophysical issues

Jet speed, composition, power, impact on the environment

> Magnetic fields, particle acceleration (?) emission mechanisms

Formation, collimation, acceleration, stability

Huge range of spatial and temporale scales (from electron gyroradius to Mpc!) $10^5 - 10^{24}$ cm e.g. Bland

e.g. Blandford et al. 2019 Blackman and Lebedev 2022