NF

UNITRENTO

Towards a joint time-resolved systematic analysis of GRBs

Aldana Holzmann Airasca^{1, 2}; Elisabetta Bissaldi ^{2, 3}; Leonardo Di Venere ^{2, 4}; Francesco Longo ^{5,6} on behalf of the *Fermi-LAT* and *Fermi-GBM*

¹ University of Trento, ² INFN Bari, ³ Politecnico di Bari, ⁴ University of Bari, ⁵ University of Trieste, ⁶ INFN Trieste

The Fermi mission: LAT and GBM

The Fermi mission: LAT and GBM

GRBs are the most energetic and luminous explosions observed in the universe, with its main emission in the gamma-rays band.

These bursts have two main phases:

- The prompt emission, a short flash of high-energy photons lasting from milliseconds to minutes.
- The afterglow, a longer-lasting multiwavelength emission.

Light curve of GRB 090510 (Ackermann et al. 2010)

GRB continuum spectrum is non-thermal, with most of the luminosity emitted in the energy range ~100 keV to ~1 MeV

The spectrum is "typically" well fitted with phenomenological *Band* (1993) function:

$$K \times \begin{cases} \left(\frac{E}{E_{\text{piv}}}\right)^{\alpha} \exp\left[-\frac{E(2+\alpha)}{E_{\text{peak}}}\right] \text{ if } E \leq E_{\text{break}} \\ \left(\frac{E}{E_{\text{piv}}}\right)^{\beta} \exp(\beta-\alpha) \left[\frac{E_{\text{peak}}(\alpha+\beta)}{E_{\text{piv}}(2+\alpha)}\right]^{\alpha-\beta} \text{ otherwise} \end{cases}$$

(Fermi LAT collaboration 2008)

GRB continuum spectrum is non-thermal, with most of the luminosity emitted in the energy range ~100 keV to ~1 MeV

The spectrum is "typically" well fitted with phenomenological *Band* (1993) function:

$$K \times \begin{cases} \left(\frac{E}{E_{\text{piv}}}\right)^{\alpha} \exp\left[-\frac{E(2+\alpha)}{E_{\text{peak}}}\right] \text{ if } E \leq E_{\text{break}} \\ \left(\frac{E}{E_{\text{piv}}}\right)^{\beta} \exp(\beta - \alpha) \left[\frac{E_{\text{peak}}(\alpha + \beta)}{E_{\text{piv}}(2+\alpha)}\right]^{\alpha - \beta} \text{ otherwise} \end{cases}$$

⁽Fermi LAT collaboration 2008)

Distribution of spectral parameters (Poolakkil et al. 2021)

5

Yearly GBM observes ~ 250 GRBs while LAT ~15 bursts

To date:

Population studies can help to identify common properties, since there are no two identical GRBs!

Past systematic studies:

- 1 joint LAT-GBM time-integrated spectral catalog (Ackerman et al. 2013)
- 1 LAT only GRB catalog (Ajello et al. 2019)
- 5 GBM only catalogs were published:
 - 4 GBM GRB spectral catalogs, last one in 2018 (Poolakkil et al. 2021)
 - **1 GBM GRB time-resolved catalog** (Xu et al. 2016)

~ 40 papers dedicated to individual GRBs

Joint systematic time-integrated and time-resolved analysis of the 16 years of mission is yet to be done

Population studies can help to identify common properties, since there are no two identical GRBs!

Past systematic studies:

- 1 joint LAT-GBM time-integrated spectral catalog (Ackerman et al. 2013)
- 1 LAT only GRB catalog (Ajello et al. 2019)
- 5 GBM only catalogs were published:
 - 4 GBM GRB spectral catalogs, last one in 2018 (Poolakkil et al. 2021)
 - **1 GBM GRB time-resolved catalog** (Xu et al. 2016)

~ 40 papers dedicated to individual GRBs

Joint systematic time-integrated and time-resolved analysis of the 16 years of mission is yet to be done work in progress

The sample selection was performed considering the first 16 years of data (from August 2008 to September 2024). The total sample has 257 bursts.

A refined list of events is used for the systematic analysis:

- The selection was considering that the arrival of the first LAT photon should fall inside the main emission measured by GBM (T_{90}).

167 bursts meet the criteria

The analysis was performed entirely using the <u>3ML package</u> (Vianello et al. 2015), with a pipeline built based on the tutorials <u>available online</u>.

Common high-level interface which allows maximum likelihood and Bayesian analysis using data from multiple missions in an unified way.

3ML

Multi-Mission Maximum Likelihood Framework

For each event we chose the time intervals for the analysis as:

T₉₀ +50% for long GRBs
 T₉₀ ± 1 s for short GRBs
 ↓
 The bins are created with the Bayesian Block method using the brightest Nal detector

Only bins with a S/N ratio > 5σ are considered

For each event we chose the time intervals for the analysis as:

• $T_{90} \stackrel{+50\%}{-20\%}$ for long GRBs • $T_{90} \pm 1$ s for short GRBs

The bins are created with the Bayesian Block method using the brightest Nal detector Only bins with a S/N ratio > 5σ are considered

8 spectral models are tested on each bin

All models with relative errors < 50% are consider GOOD models The BEST model is chosen based on the BIC criteria (Chand et al, 2018.) wrt the Comptonized model:

 $\Delta BIC = BIC_{Comp.} - BIC_{Model X} < 6$

Band model

$$K \times \begin{cases} \left(\frac{E}{E_{\rm piv}}\right)^{\alpha} \exp\left[-\frac{E(2+\alpha)}{E_{\rm peak}}\right] \text{ if } E \leq E_{\rm break} \\ \left(\frac{E}{E_{\rm piv}}\right)^{\beta} \exp(\beta-\alpha) \left[\frac{E_{\rm peak}(\alpha+\beta)}{E_{\rm piv}(2+\alpha)}\right]^{\alpha-\beta} \text{ otherwise} \end{cases}$$

SBPL model

$$K \Big(\frac{E}{E_{\rm break}} \Big)^{\alpha} \Big[1 + \frac{E}{E_{\rm break}}^{\frac{1}{\Delta}} \Big]^{(\beta - \alpha)\Delta}$$

ISSM model

$$K \Big[1 - \frac{E_{\text{peak}}}{E_{\text{ref}}} \Big(\frac{2+\beta}{2+\alpha} \Big) \Big]^{\alpha-\beta} \Big(\frac{E}{E_{\text{ref}}} \Big)^{\alpha} \Big[\frac{E}{E_{\text{ref}}} - \frac{E_{\text{peak}}}{E_{\text{ref}}} \frac{(2+\beta)}{(2+\alpha)} \Big]^{\beta-\alpha}$$

Comptonized model
$$K\left(rac{E}{E_{
m ref}}
ight)^{lpha}\exp{-rac{(lpha+2)E}{E_{
m peak}}}$$

Best func.

Total time interval used: $T_0 - 1.05 \text{ s} - T_0 + 1.91 \text{ s}$ Divided into 10 bins

shown in colors.

0.41 - 0.53 s Compt. 0.53 - 0.56 s Compt. 0.56 - 0.60 s Compt. 0.60 - 0.66 s Compt. 0.66 - 0.69 s Band 0.69 - 0.73 s Band 0.73 - 0.75 s Band 0.75 - 0.82 s Band+BB 0.82 - 0.83 s SBPI 0.83 - 0.92 s Pwl

Time interval

The total amount of analysed bins is 2971

-						
D	RELIN	Data set	Low-energy index	High-enegy index	E_{peak} [keV]	E_{break} [keV]
	Systema	atic analysis GOOD	$-0.86\substack{+0.38\\-0.81}$	$-2.77^{+0.37}_{-0.59}$	$290\substack{+400 \\ -190}$	240^{+300}_{-150}
-	System	natic analysis BEST	$-0.79\substack{+0.35\\-0.47}$	$-2.58\substack{+0.33\\-0.52}$	300^{+410}_{-190}	280^{+350}_{-150}

	Data Set	Low-energy Index	High-energy Index	E _{peak} (keV)	E _{break} (keV)
				Fluence Spectra	
GBM 10 years cat.	Poolakkil et al. 2021	$-1.08\substack{+0.45\\-0.44}$	$-2.20\substack{+0.26\\-0.29}$	180^{+307}_{-88}	107^{+88}_{-49}
GBM 4 years cat.	Gruber et al. (2014)	$-1.08\substack{+0.43\\-0.44}$	$-2.14\substack{+0.27\\-0.37}$	196_{-100}^{+336}	103^{+129}_{-63}
GBM 2 years cat.	Goldstein et al. (2012)	$-1.05\substack{+0.44\\-0.45}$	$-2.25\substack{+0.34\\-0.73}$	205^{+359}_{-121}	123^{+240}_{-80}
BATSE cat.	Kaneko et al. (2006)	$-1.14\substack{+0.20\\-0.22}$	$-2.33\substack{+0.24\\-0.26}$	251^{+122}_{-68}	204_{-56}^{+76}

Results of the distribution of spectral parameters (Poolakkil et al. 2021)

- We have two systematic pipelines one for time-resolved and one for time-integrated.
- Time-resolved on 167 events, preliminary results and distribution of parameters appear to be reasonable

To-do list:

- Identify and study bursts that show an extra spectral components.
- Analyse how the results of the GBM only time-resolved analysis changes when adding LAT data (work in progress in collaboration with D. Depalo and E. Bissaldi).
- In depth study of the spectral evolution of the parameters, with particular interest in seeing if the firsts bins of the long GRBs are similar to the short events.

- We have two systematic pipelines one for time-resolved and one for time-integrated.
- Time-resolved on 167 events, preliminary results and distribution of parameters appear to be reasonable

To-do list:

- Identify and study bursts that show an extra spectral components.
- Analyse how the results of the GBM only time-resolved analysis changes when adding LAT data (work in progress in collaboration with D. Depalo and E. Bissaldi).
- In depth study of the spectral evolution of the parameters, with particular interest in seeing if the firsts bins of the long GRBs are similar to the short events.

Thank you!

Backup slides

Fireball model

The sample selection was performed considering the **first 16 years of data** (from August 2008 to September 2024).

The total sample size is **257 bursts**:

- 14 don't have a GBM file and/or where not seen by BGO detectors
- \sim 78 have more than 5 σ significance in LLE

A refined list of events is used for the systematic analysis:

- The selection was considering that the arrival of the first LAT photon should fall inside the T_{90} as measured by GBM.
- The surviving events were sorted into decreasing order of the TS value in the GBM time-window (T_{90}) .

167 bursts meet the criteria

- The analysis was performed entirely using the **<u>3ML package</u>**, with a pipeline built based on the tutorials <u>available online</u>.
- **GBM** and **LLE** data (*TTE*, *CSPEC* and .rsp files) is downloaded from the online database, using basic information regarding the T_{90} and background from the online catalog.
- **LAT** data is downloaded from the HEARSAC archive and the *CSPEC*, *.rsp*, *eventfile* and *ft2file* are created using the *FermiTools*.
- After performing the interval selection for the analysis, *DispersionSpectrumLike* (for GBM and LLE) and *FermiLATLike* (for LAT) plugins are created.
 - For GBM the energy selection goes from 10-30 keV 35-1000 keV for NaI detectors and 0.25-10 MeV for BGO,
 - For LLE goes from 30-100 MeV,
 - And for LAT > 100 MeV
- The spectral fit is performed using different models

Time-integrated spectral analysis results of GRB 110721A fitted with Band+BB function

The total amount of analysed bins is 2971

The tot GOOD sample

Model	Count	Percentage
Pwl	2849	25.40
Comp	2272	20.25
SBPL	1998	17.81
Band	1606	14.32
ISSM	827	7.37
SBPL+BB	734	6.54
Band+BB	628	5.60
ISSM+BB	304	2.71

Percentage of times a function fitted the bin data *reasonably*

BEST sample

Model	Count	Percentage
Comp	1591	54.49
Pwl	491	16.82
Band	419	14.35
SBPL	269	9.21
ISSM	99	3.39
Band+BB	24	0.82
SBPL+BB	16	0.55
ISSM+BB	11	0.38

Percentage of best fitting sample for each bin

Distribution of the β index

BEST sample

BES	BEST sample		
Model	Count	Percentage	
Band	68	36.17	
Comp	34	18.09	
ISSM	20	10.64	
Comp+Comp	13	6.91	
SBPL	12	6.38	
SBPL+BB	10	5.32	
Band+BB	7	3.72	
Pwl	6	3.19	
Band+Pwl	5	2.66	
SBPL*E	4	2.13	
Comp+Pwl	4	2.13	
Band*E	4	2.13	
ISSM+BB	1	0.53	

Percentage of best fitting sample for each burst

Test results on the pipeline of time-integrated analysis

Distribution of β Band-based 17.5 ISSM-based SBPL-based Total 15.0 12.5 Counts 10.0 7.5 5.0 2.5 0.0 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5

Distribution of the **E**_{break}

β

INF

Istituto Nazionale di Fisica Nucleare

20

-4.5

4.0

-3.5

-3.0

В

Distribution of the **a** index

A. Holzmann Airasca - Sexten 2025

-2.5

-2.0

10

-4.5

-4.0

-3.5

-3.0

β

-2.5

-2.0

-1.5

