GAMMA-RAY BURSTS: AFTERGLOW EMISSION

INAF

INAF
 ISTITUTO NAZIONALE
 DI ASTROFISICA

Osservatorio Astronomico di Brera

EMISSION FROM GRBS: AN OVERVIEW

TWO DISTINCT EMISSION PHASES

PROMPT

- from 10 keV to 10 MeV
- non-thermal spectra
- 0.1 seconds to 10³ seconds
- highly variable flux

AFTERGLOW

- from radio to TeV
- non-thermal spectra
- days weeks
- smooth (PL) lightcurve

AFTERGLOW EMISSION LIGHTCURVES

OBSERVATIONS AT DIFFERENT FREQUENCIES

WORKSHOP SESTO

AFTERGLOW EMISSION LIGHTCURVES

OBSERVATIONS AT DIFFERENT FREQUENCIES

WORKSHOP SESTO

GAMMA-RAY BURSTS - THE STANDARD MODEL

WORKSHOP SESTO

AFTERGLOW EMISSION: EXTERNAL SHOCK MODEL

To predict and model the radiative output, it is necessary to model the following three processes:

• <u>Dynamics</u>

how Γ evolves as a function of distance r and time

- <u>Relativistic collisionless shocks</u> particle acceleration and *B* amplification
- <u>Radiative process(es)</u>
 how the radiative output is produced

DYNAMICS

Collision between jet of kinetic energy $E_k = \Gamma_0 M_{ej} c^2$ and the external medium with number density $n(r) = A r^{-s}$

At distance r, the collected mass is $m(r) = \int 4\pi r^2 n(r) m_p dr \propto r^{3-s}$

Conservation of energy and momentum

BEFORE COLLISION

$$\Gamma_0 M_{ej} c^2 + m(r)c^2 = \Gamma(r) \left[M_{ej} + m(r) + \epsilon'(r)/c^2 \right] c^2$$

$$\Gamma_0 \beta_0 M_{ej} c = \Gamma(r) \beta(r) \left[M_{ej} + m(r) + \epsilon'(r)/c^2 \right] c$$

DYNAMICS

$$\Gamma(r) = \frac{\Gamma_0 M_{ej} + m(r)}{\sqrt{m^2(r) + 2\Gamma_0 M_{ej}m(r) + M_{ej}^2}}$$

•
$$m(r) < \frac{M_{ej}}{2\Gamma_0}$$

$$\Gamma(r) = \Gamma_0$$

coasting phase

•
$$\frac{M_{ej}}{\Gamma_0} < m(r) < M_{ej}\Gamma_0$$
 $\Gamma(r) \simeq \sqrt{\frac{E_k}{m(r)}}$

deceleration phase see Blandford & McKee 1976

• $m(r) > M_{ej}\Gamma_0$ $\Gamma(r) \to 1$ non-relativistic phase

DYNAMICS

A closer look to the deceleration phase see Blandford & McKee 1976

$$\frac{M_{ej}}{\Gamma_0} < m(r) < M_{ej}\Gamma_0 \longrightarrow \Gamma(r) \simeq \sqrt{\frac{E_k}{m(r)}} \propto r^{-\frac{(3-s)}{2}}$$

Given the relation between radius and time:

$$t_{obs} \simeq (1+z) \frac{r}{c\Gamma^2} \longrightarrow \Gamma(t_{obs}) \propto$$

RELATIVISTIC SHOCKS

RELATIVISTIC SHOCKS

DIFFUSIVE SHOCK ACCELERATION (FERMI MECHANISM)

PARTICLE ACCELERATION

A fraction of the dissipated energy is used to accelerate particles through **collisionless** (no Coulomb collision) **shocks**. The output of this acceleration process is a power-law particle spectrum with index p = 2.2 - 2.4

PARTICLE ACCELERATION

Derivation of the average and minimum Lorentz factor (< γ > and γ min) of the electrons

•
$$N_e < \gamma > m_e c^2 = \epsilon_e N_p m_p c^2 (\Gamma - 1)$$

 $\Rightarrow < \gamma > = \epsilon_e \frac{m_p}{m_e} (\Gamma - 1) \simeq 2 \times 10^4 \epsilon_{e,-1} \Gamma_2$

•
$$<\gamma> = \frac{\int_{\gamma_{min}}^{\gamma_{max}} \frac{dN}{d\gamma} \gamma d\gamma}{\int_{\gamma_{min}}^{\gamma_{max}} \frac{dN}{d\gamma} d\gamma} = \frac{\int_{\gamma_{min}}^{\gamma_{max}} \gamma^{-p+1} d\gamma}{\int_{\gamma_{min}}^{\gamma_{max}} \gamma^{-p} d\gamma}$$

for $\gamma_{max} > > \gamma_{min}$ and p > 2

$$\Rightarrow \quad \gamma_{min} = \epsilon_e \, \frac{m_p \, p - 2}{m_e \, p - 1} (\Gamma - 1)$$

RELATIVISTIC SHOCKS

MAGNETIC FIELD AMPLIFICATION

Derivation of the magnetic field strength

•
$$\epsilon_B n' m_p c^2 (\Gamma - 1) = \frac{B'^2}{8\pi}$$

 $n'_p = \frac{N_p}{V'} = \frac{N_p}{V/\Gamma} = n_p \Gamma$

factor 4 due to shock compression $\implies n' = 4 \Gamma n$

$$\Rightarrow \quad B' = \sqrt{32\pi\epsilon_B n \, m_p \, c^2} \, \Gamma$$

Synchrotron cooling time

$$t'_{c}(\gamma, B') = \frac{E(\gamma)}{P(\gamma, B')} = \frac{6 \pi m_{e} c}{\sigma_{T} \gamma B'^{2}}$$
$$\gamma_{c} = \frac{6 \pi m_{e} c}{\sigma_{T} t' B'^{2}}$$

SYNCHROTRON SPECTRUM

SPECTRUM FROM A POPULATION OF ELECTRONS

$$\nu_{syn} = \gamma^2 \frac{q_e B}{2 \pi m_e c} \Gamma$$

SYNCHROTRON SPECTRUM

synchrotron spectrum

SYNCHROTRON LIGHTCURVES

EXAMPLES OF EXPECTED AFTERGLOW LIGHTCURVES

WORKSHOP SESTO

MODELING OF AFTERGLOW LIGHTCURVES

EXAMPLE OF MODELING OF MULTI-WAVELENGTH AFTERGLOW LIGHTCURVES

GRBS AT GEV ENERGIES

THE MAXIMAL SYNCHROTRON FREQUENCY

electron spectrum after acceleration

maximal energy of accelerated electrons implies maximal energy of synchrotron photons

GRBS AT GEV ENERGIES

THE MAXIMAL SYNCHROTRON FREQUENCY

Maximal electron energy γ_{max} is reached when acceleration time is equal to cooling time: $t'_{acc}(\gamma) = t'_{syn}(\gamma)$

$$t'_{acc} \simeq \frac{r_L}{c} \simeq \frac{E'}{eB'c} = \frac{\gamma m_e c^2}{eB'c} \qquad t'_{syn} = \frac{6\pi m_e c}{\sigma_T B'^2 \gamma}$$

$$\Rightarrow \quad \gamma_{max}^2 = \frac{6\pi e}{\sigma_T B'}$$

$$E_{max} = h\nu_{max} = h\nu'_{max} 2\Gamma = \gamma_{max}^2 \frac{eB'h}{2\pi m_e c} 2\Gamma = \frac{9m_e c^2 h}{4\pi e^2} \Gamma \simeq 150 \, MeV \times \Gamma$$

GRBS AT GEV ENERGIES

PROBLEM WITH THE INTERPRETATION

Many photons detected from GRBs have energies exceeding the maximal synchrotron energy

GRBS AT TEV ENERGIES???

PRESENCE OF SYNCHROTRON SELF COMPTON?

