

Analysis

Chiara Arcangeletti

Riunione LNF, 2nd July 2025

The Higgs boson Width and Off-shell production

- SM Higgs width $\Gamma_{\rm H}$ =4.1 MeV \rightarrow experimental resolution O(1-2 GeV) are too small to allow direct measurements
- Indirect measurement from the ratio of the on-shell/off-shell Higgs boson production

$$\sigma_{gg o H o ZZ}^{ ext{on-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_H \Gamma_H} \quad \sigma_{gg o H o ZZ}^{ ext{off-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_{ZZ}^2} \qquad \qquad \qquad \frac{\Gamma_H}{\Gamma_H^{ ext{SM}}} = \frac{\mu_{ ext{off-shell}}}{\mu_{ ext{on-shell}}}$$

2nd wave of the analysis used the Simulation-based Inference (SBI) method

- SBI provides powerful method for increased sensitivity
- directly approximating relevant likelihood ratios with neural networks
- O(1000) NNs to describe the LL requires lots of GPUs

H→ZZ* → 4l and 2l2 ν channels performed this measurements with full Run 2 dataset: $\Gamma_{\rm H}$ = 4.3^{+2.7}_{-1.9} MeV @68% C. L.

Evidence of **off-shell** Higgs boson production: $\mu_{\text{off-shell}} = 1.06^{+0.62}_{-0.45}$ (3.7 σ)

$H \rightarrow ZZ^* \rightarrow 4I$ differential XS and STXS

First results with partial Run 3 dataset (2022+2023) in this channel for Moriond → Paper planned

to include also 2024 data

CONF NOTE results

- Differential observables p_T^H , y_H , N_{jets} , $m_{34} \rightarrow EFT$ interpretation
- STXS: Stage $0 \rightarrow \kappa$ framework
- R&D to include in the paper
 - Fake-Factor method to estimate the reducible background
 - κ_{λ} interpretation of p_T^H
 - Use of GNN for STXS and decay STXS
 - Additional differential CP-odd sensitive variables for EFT interpretation

Quantum Entanglement in Higgs

Test the Quantum Entanglement and Bell theorem with Di-boson pairs

• Instead of traditional 'qubits' (0, 1) system test, the VV system provides 'qutrits' (-1, 0, 1) test!

(Scalar) Higgs system provides pure state!

What are we going to measure?

H→ZZ* and H→WW* optimizing the analyses on different observables based on the final state

- H→ZZ*→4I final state fully reconstructed → spin density matrix
 - Peres-Horodecki criterion provides a necessary condition for entanglement (in the ggH system) which, given the form of spin density matrix, translates into: $C_{2,1,2,-1} \neq 0$ or $C_{2,2,2,-2} \neq 0$
 - Hypothesis test longitudinal (non-entangled) vs SM mixture (non-entangled) \rightarrow Preliminary sensitivity estimation up to 4.1 σ
 - Study the impact of EW NLO correction
 - Under EB review

$H \rightarrow \mu^+ \mu^-$

New for EPS!

Direct probe of the muon Yukawa coupling

• First look at $H \rightarrow \mu\mu$ in Run 3 data (2022-2024 ~ 165 fb⁻¹) + combination with Run2 (140 fb⁻¹)

Analysis Strategy (wrt Run2)

- Require 2 muons: refitting
 H→μμ primary vertex improved
 1.8% mass resolution
- Improved Bkg modelling: include cc and bb contribution and use of FullSim instead of FastSim
- Fit over 23 categories
 - Improved VH categories (+ new VH2l category)
 - Use of NN classifier for ttH category
- Main systematics from bkg modelling (spurious signal)

ATLAS first standalone evidence for

 $H \rightarrow \mu\mu$

Observed significance: 3.4σ (exp. 2.5σ)

Best-fit value for the signal strength Run 2+3 combined μ =1.4±0.4(stat.)±0.1(syst.)

Plans

- On-going analysis with partial Run 3 is differential XS and STXS
 - No real game changer in the strategy, but few ideas that could be tested in view of a final Run 3 publication
 - Timescale super tight (Higgs 2025), no real margin for real innovation
- Coming analyses most probably with full Run 3 dataset
 - Exception for the mass measurement that could be a partial Run 3 one, but not kicked-off yet, so timescale not defined \rightarrow will be probably a "fast" publication, so the basic the better
 - Other analyses that will probably start soon is Offshell measurement using again NSBI method, and ZH->invisible search (just started, no real discussion on doing something new)
- RML (HZZ) is going a bit around with analyses
 - The statistical limit always justify the improvement without a real need of changing the strategies
 - Few ideas of making new measurements (see QE)
 - ML techniques will drive all the future analyses, so need to stay on spot: NSBI raised lots of interest in the community. Interesting idea to study is ML for unfolding \rightarrow maximise information and much better sensitivity, but what about combination? Are we still interested in doing it?
 - Could be interesting studying new final states? $H \rightarrow WW$ is going a bit forward in this direction (lyqq, lvcs), but is it worth it for HZZ? Taus inclusion is already under investigation in High-mass search