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Tilted-pulse-front 
pumping (TPFP) of 
LiNbO3 has been 
providing the highest 
THz pulse energies and 
efficiencies in the low-
frequency part of the 
THz spectrum.

There are three main limitation factors for energy scalability and THz beam 
quality :
• Limited interaction length due to angular dispersion (i).
• Prism shape of the LN crystal (ii).
• Imaging errors (iii).

Terahertz (THz) pulse applications such as strong-field control of matter, 
charged particle manipulation, and acceleration require the highest 
possible field strengths. To achieve that, high pulse energy and excellent 
focusability are essential.
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The surface roughness measured by optical microscopy was ~53 nm (a). In case of  an ideal surface 

the transmission through the NLES should be 68% (d). Instead of  that only 40% was measured. 

This correspond to an Τ𝑆𝑞 𝜆 = 0.058 and 𝑆𝑞 = 60 nm. Furthermore, the measured divergence after 

the NLES was 43 mrad, which is larger than expected from a 50 µm slit (26 mrad). This further 

reduce the generation efficiency by lowering the intensity inside the NLES.
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A simple model was created to compare the measured THz generation efficiency with the theoretical predictions:

Pumping the presented (optimal) setup at room temperature with a pump beam having a 20 mm × 30 mm elliptical

cross-section (matching to the size of the used NLES) and pulses with 64 mJ energy and 200 fs duration

(corresponding to an intensity of 150 GW/cm2 significantly below the damage threshold of the NLES), the THz

generation efficiency would exceed 0.12% (0.65%) (approaching (significantly exceeding) the 0.16% measured for a

conventional TPFP LN source using the same pump laser and THz detector), yielding a THz energy of 77 (416) μJ.

Focusing this THz beam by NA=0.6 numerical aperture optic would result in an electric field as high as 1.7 MV/cm

(~4.5 MV/cm).
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