PECSI TUDOMANYEGYETEM
UNIVERSITY OF PECS

EKOP < Progress Towards a Highly Efficient, Compact,

Egyetemi Kutatai Osztéindij Program

Scalable THz Pulse Source

PECSI TUDOMANYEGYETEM
SZENTAGOTHAI JANOS

Gergd Krizsan,!23 Jurasits Balint,! Gabor Almasi'? and Janos Hebling'2 KUTATOKOZPONT
1. Institute of Physics, University of Pécs, Pécs, Hungary I-I U N Hungarian
2. Szentdgothai Research Centre, University of Pécs, Pécs, Hungary R E N Research
3. HUN-REN—PTE High-Field Terahertz Research Group, Pécs, Hungary Network
Introduction Limitation factors of the conventional THz pulse sources
Terahertz (THz) pulse applications such as strong-field control of matter, There are three main limitation factors for energy scalability and THz beam
charged particle manipulation, and acceleration require the highest quality :
possible field strengths. To achieve that, high pulse energy and excellent * Limited interaction length due to angular dispersion (i).
focusability are essential. _— * Prism shape of the LN crystal (ii).
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The scalable NLES-VPHG THz setup and the characterization of the micromachined surface
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The surface roughness measured by optical microscopy was ~53 nm (a). In case of an ideal surface
the transmission through the NLES should be 68% (d). Instead of that only 40% was measured.
This correspond to an Sz /A = 0.058 and S; = 60 nm. Furthermore, the measured divergence after
the NLES was 43 mrad, which is larger than expected from a 50 um slit (26 mrad). This further
reduce the generation efficiency by lowering the intensity inside the NLES.
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THz generation characteristic of the demonstrated setup
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Pumping the presented (optimal) setup at room temperature with a pump beam having a 20 mm % 30 mm elliptical
cross-section (matching to the size of the used NLES) and pulses with 64 m] energy and 200 fs duration
1.0 (corresponding to an intensity of 150 GW/cm? significantly below the damage threshold of the NLES), the THz
| generation efficiency would exceed 0.12% (0.65%) (approaching (significantly exceeding) the 0.16% measured for a
PR — conventional TPFP LN source using the same pump laser and THz detector), yielding a THz energy of 77 (416) wJ.
- "M 2*Measured Y Focusing this THz beam by NA=0.6 numerical aperture optic would result in an electric field as high as 1.7 MV/cm
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