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Abstract

The Radio-Frequency Quadrupole (RFQ) proton accelerator, consisting of 2 modules, was designed in the UHF band (800 MHz) to accelerate a proton beam with 20 keV energy to 2
MeV energy at a distance of less than one meter at KAHVE-Lab (Kandilli Detector, Accelerator and Instrumentation Laboratory). A prototype module of the RFQ (module 0) was
manufactured from normal copper material to investigate the domestic producibility of the RFQ cavity. It was subjected to mechanical and vacuum tests. Moreover, it was
completed to tune the EM field, and frequency parameters in accordance with the desired operating settings. The tuning of field distribution and frequency is a critical step in the
successful operation of any RFQ accelerator, including the PTAK-RFQ module 0. A tuning algorithm developed for CERN was adapted for the PTAK-RFQ module 0 to obtain the
desired field distribution, followed by frequency tuning as manual. This tuning algorithm relied on a response matrix, which used bead-pull measurements of individual tuner
movements as inputs. Based on these measurements, the tuning algorithm provided predictions for corrective tuner movements needed to achieve the desired field distribution.
The final RFQ was manufactured from oxygen-free copper material. It was subjected to a series of mechanical tests after being fully assembled for the first time. In this study, the

ongoing testing and current status of the 800 MHz RFQ will be discussed.

Table 1: Comparing recently introduced RFQs.

The Proton Testbeam in the Kandilli campus, known as the PTAK
project (see Fig. 1), is an educational project as well a functional
one as it will serve PIXE (Proton induced X-ray emission)
experiments, which is one of the most common non-destructive
lon beam analysis methods.
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Figure 1: Layout of the PTAK project at KAHVE-Lab.

The first stage of the compact proton accelerator, which includes
the ion source and the low energy beam transport (LEBT) section
including the measurement box (MBOX), has been commissioned
at the KAHVE-Lab, Turkey [1].

The PTAK-RFQ (800 MHz) will operate
at a frequency higher than similar
RFQs and therefore will have a shorter
module length (see in Table 1)[2,3].

The 20 keV energy proton beam will be accelerated up to 2 MeV through the 800 MHz RFQ. The design of the
800 MHz RFQ includes:

« a 4-vanes structure,
« assembling by means of bolts without the need for any soldering or brazing,

« finger-type RF shields to prevent RF leakages,

« special 3-D Viton O-ring vacuum seal to prevent vacuum leakages [2,3].

achieve the desired field distribution [2,3].

emergence of its final design. In addition, the previous experience has also led to facilitating solutions

of intersecting channel widths. Hence, the 800 MHz four-vane RFQ, which consists of two modules,
was successfully produced from oxygen-free copper material (see Figs. 2(a) and 2(b))[4] .
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Firstly, it has been subjected to several mechanical, surface and alignment tests.
« The vane tip errors were found to be less than 20 um.
« The roughness was measured to be less than 0.2 um on the lateral surfaces.

 Finally, the 4 vanes were disassembled and reassembled multiple times to
measure the vane alignment repeatability. This alignment error is reduced from
40 um to about 25 um due to the alignment pins.

Vacuum tests are currently ongoing [4].

Figure 3: (a) Fabricated vanes of the 800 MHz RFQ and (b) view of the rough assembly of each module. [1] A. Adiguzel, et al., “lon source and LEBT of KAHVELab proton beamline”, JINST, vol. 18, no. 01. p. T01002, 2023. doi: 10.1088/1748-
0221/18/01/T01002
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Figure 2: (a) View of the test module at CMM frame, (b) view of the
setup for the initial vacuum tests of the PTAK-RFQ module 0

The test module of the PTAK-RFQ was manufactured from
ordinary copper and all its mechanical, vacuum and RF tests were
recently completed [2,3].
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