
Circuit Quantum Electrodynamics (cQED)

and Superconducting Qubits

Adnan Memon

July 03, 2025

Department of Physics and Astronomy

University of Bologna

1



Content

1. Quantum Circuit Elements

• Quantum LC circuit

• Transmission-line resonator

2. Superconductivity and Josephson Junction

• Superconductivity

• Josephson Junction

3. Superconducting Qubits

• Transmon artificial atom

• Other superconducting qubit designs

4. Circuit QED

• Jaynes-Cummings model

• Wiring up quantum systems with transmission lines

• Input-output theory

2



Content

1. Quantum Circuit Elements

• Quantum LC circuit

• Transmission-line resonator

2. Superconductivity and Josephson Junction

• Superconductivity

• Josephson Junction

3. Superconducting Qubits

• Transmon artificial atom

• Other superconducting qubit designs

4. Circuit QED

• Jaynes-Cummings model

• Wiring up quantum systems with transmission lines

• Input-output theory

2



Content

1. Quantum Circuit Elements

• Quantum LC circuit

• Transmission-line resonator

2. Superconductivity and Josephson Junction

• Superconductivity

• Josephson Junction

3. Superconducting Qubits

• Transmon artificial atom

• Other superconducting qubit designs

4. Circuit QED

• Jaynes-Cummings model

• Wiring up quantum systems with transmission lines

• Input-output theory

2



Content

1. Quantum Circuit Elements

• Quantum LC circuit

• Transmission-line resonator

2. Superconductivity and Josephson Junction

• Superconductivity

• Josephson Junction

3. Superconducting Qubits

• Transmon artificial atom

• Other superconducting qubit designs

4. Circuit QED

• Jaynes-Cummings model

• Wiring up quantum systems with transmission lines

• Input-output theory

2



Content

1. Quantum Circuit Elements

• Quantum LC circuit

• Transmission-line resonator

2. Superconductivity and Josephson Junction

• Superconductivity

• Josephson Junction

3. Superconducting Qubits

• Transmon artificial atom

• Other superconducting qubit designs

4. Circuit QED

• Jaynes-Cummings model

• Wiring up quantum systems with transmission lines

• Input-output theory

2



Quantum Circuit Elements



Classical LC Oscillator

• ϕ is the node flux defined as

ϕ(t) =
∫ t

−∞ dτV (τ)

• Hamiltonian:

H = Q2

2C + 1
2Cω2

r ϕ
2

This is in the form of a

mechanical oscillator of

coordinate ϕ, conjugate

momentum Q, and mass C
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Quantum LC Oscillator

• Promote ϕ and Q to non-commuting operators, obeying the

canonical commutation relation [ϕ̂, Q̂] = iℏ.

• The Hamiltonian takes the form

H = ℏΩ
{
â†â+

1

2

}
in terms of standard annihilation and creation operators

â = +i
1√

2CℏΩ
Q̂ +

1√
2LℏΩ

ϕ̂

â† = −i
1√

2CℏΩ
Q̂ +

1√
2LℏΩ

ϕ̂

that obey the relation

[â, â†] = 1

• The â† operator creates a quantized excitation of the flux and

charge, which is interpreted as a photon of frequency Ω stored in the

circuit.
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Quantum LC Oscillator (Cont.)

Conditions on LC oscillator to work in the quantum regime

• The energy separation ℏΩ must be significantly greater than the

thermal energy kBT .

• The oscillator must be sufficiently decoupled from uncontrolled

degrees of freedom.

Using superconducting material allows us to achieve these conditions (in

addition to other advantages)

.

The energy gap between any two levels is ℏΩ. This does not give us the

freedom to isolate 2 energy levels.
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Transmission-Line Resonator

The classical Hamiltonian corresponding to the lumped-element circuit

can be written as

H =

∫ d

0

dx

{
1

2c
Q2 +

1

2l
(∂xϕ)

2

}
where c and l are capacitance and inductance per unit length,

ϕ ≡
∫ t

−∞ dτV (x , τ) is the generalized flux and Q being its conjugate

momentum.
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Transmission-Line Resonator (Cont.)

The solutions to the Hamilton’s equation can be expressed in terms of

the normal modes

ϕ(x , t) =
∞∑

m=0

um(t)ϕm(x)

with

üm(t) = −ω2
mum(t)

ϕm(x) =
√
2cos(kmx)

where m ∈ {0, 1, 2, ...} and km = mπ/d . These solutions are for an

open-ended λ/2 resonator.

we can express the Hamiltonian as a sum over independent harmonic

oscillators

H =
∞∑

m=0

{
1

2dc
Q2

m +
dc

2
ω2
mu

2
m

}
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Transmission-Line Resonator (Cont.)

Following the quantization procedure as before, we get

H =
∞∑

m=0

ℏωmâ
†
mâm

in terms of annihilation and creation operators

âm = +i

√
2Zm

ℏ
Q̂m +

√
2

ℏZm
ûm, â†m = −i

√
2Zm

ℏ
Q̂m +

√
2

ℏZm
ûm

that obey the relation

[âm, â
†
m] = 1

with Zm =
√

Lm/dc the characteristic impedance of mode m,

ωm = (m + 1)ω0 the mode frequency and ω0/2π = v0/2d the

fundamental frequency of the λ/2 transmission-line resonator.
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Superconductivity and Josephson

Junction



Superconductivity

• Superconductivity is a physical phenomenon where, in certain metals

and compounds, an electric current flows with zero resistance below

a critical temperature Tc .

• For an integrated circuit, using metallic superconductors fulfills two

important requirements:

1. The absence of dissipation

2. The typical energy of thermal fluctuations is much smaller than the

energy quantum associated with the transitions between states.

• This phenomenon is explained by considering Cooper pair of

electrons which are pairs of opposite spin electrons that bind

together via an effective attraction mediated by phonons.
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Josephson Junction

• A Josephson tunnel junction consists of two metallic electrodes

separated by a thin oxide barrier.

• For such a system, Josephson showed that the supercurrent is given

by

I = Ic sinϕ

where Ic is the maximum possible dissipationless current whose

magnitude is determined by the junction size and material

parameters, and ϕ is the gauge-invariant phase difference across the

junction. Josephson also showed that, in presence of a potential

difference V across the junction, the phase difference obeys

∂tϕ =
2π

Φ0
V

where Φ0 is the flux quantum.
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Josephson Junction

• Taken together, the Josephson relations relates the supercurrent to

the flux Φ(t) = ϕ(t)Φ0/2π =
∫
dτV (τ).

• We define the differential Josephson inductance as

LJ(Φ) =

{
∂I

∂Φ

}−1

=
Φ0

2πIc

1

cos(2πΦ/Φ0)

This shows that, under the critical temperature, the Josephson

junction acts as a non-linear inductor.

• The non-linearity will allow us to isolate two energy levels of our

artificial atom.
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Superconducting Qubits



Transmon Artificial Atom

Replace the geometric inductance L of the LC oscillator with a Josephson

junction.

The energy of the non-linear inductance takes the form

E = −EJ cos

(
2πΦ

Φ0

)
with EJ = Φ0Ic/2π the Josephson energy.

The energy of the capacitor, including a possible offset charge term,

takes the form

E =
(Q − Qg )

2CΣ

with CΣ = CJ + CS the total capacitance, including the junction’s

capacitance and the shunt capacitance and Qg is the possible offset

charge term representing the effect of an external electric field bias or

some microscopic junction asymmetry which breaks the degeneracy

between positive and negative charge transfers
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Transmon Artificial Atom (Cont.)

The quantized Hamiltonian of the capacitively shunted Josephson

junction becomes

Ĥ =
(Q̂ − Qg )

2CΣ
− EJ cos

(
2πΦ̂

Φ0

)
= 4EC (n̂ − ng )

2 − EJ cos ϕ̂

where we define the charging energy EC = e2/2CΣ, the charge number

density n̂ = Q̂/2e, the offset charge number density ng = Qg/2e and the

phase operator ϕ̂ = (2π/Φ0)Φ̂.
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Transmon Artificial Atom (Cont.)

The spectrum of Ĥ is controlled by the ratio EJ/EC

• EJ/EC ≪ 1 corresponding to charge qubits

• EJ/EC ∼ 1 corresponding to the quantronium

• EJ/EC ≫ 1 corresponding to the transmon.
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Transmon Artificial Atom (Cont.)

In the transmon regime the charge degree of freedom is highly delocalized

due to large EJ and the first energy levels essentially become independent

of the gate charge. The approximate transmon Hamiltonian takes the

form

Ĥq = 4EC n̂
2 +

1

2
EJ ϕ̂

2 − 1

4!
EJ ϕ̂

4

Introducing the creation and annihilation operators, to diagonalize the

first two terms, as

b̂ = +2i

(
2EC

EJ

)1/4

n̂+

(
EJ

2EC

)1/4

ϕ̂, b̂† = −2i

(
2EC

EJ

)1/4

n̂+

(
EJ

2EC

)1/4

ϕ̂

and writing the approximate transmon Hamiltonian as

Ĥq = ℏωq b̂
†b̂ − EC

2
b̂†b̂†b̂b̂

where ℏωq =
√
8ECEJ − EC
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Other Superconducting Qubit Designs

• A useful variant is the flux-tunable transmon, where the single

Josephson junction is replaced by two parallel junctions forming a

SQUID.

• This allows the transmon frequency to be tuned by an external

magnetic flux threading the SQUID loop. This tunability enables

fast changes in qubit frequency, useful for quantum logical gates.

• However, flux-tunable transmons are susceptible to dephasing due

to flux noise.
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Other Superconducting Qubit Designs (Cont.)

Other types of superconducting qubits include:

• Charge qubits: Low EJ/EC , sensitive to charge noise.

• Flux qubits: Based on superconducting loop with Josephson

junctions.

• Phase qubits: Josephson junction shunted by a lumped element

inductor.

• Quantronium: An intermediate EJ/EC regime.

• Fluxonium qubit: Small Josephson junction shunted by a high

inductance from a series array of large-capacitance tunnel junctions.

The fluxonium can maintain large anharmonicity while suppressing

offset charge noise effects.
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Circuit QED



Jaynes-Cummings Model

• The Jaynes-Cummings Hamiltonian is the foundational model

describing the interaction between a two-level atom and a single

mode of the electromagnetic field.

Ĥ = ℏωr â
†â+

ℏωq

2
σ̂z + ℏg(âσ̂+ + â†σ̂−)

where ωr is the frequency of the mode that transmon interacts with

primarily, g is the coupling constant, σ̂− = |g⟩ ⟨e|, σ̂+ = |e⟩ ⟨g | and
σ̂z = |e⟩ ⟨e| − |g⟩ ⟨g |.

• In this model, the uncoupled states are qubit-photon states (e.g.,

|g , n⟩, |e, n⟩), and the coupled system forms dressed states or

polaritons, which are the true eigenstates of the system.

• In the resonant regime (∆ = ωq − ωr = 0), the degeneracy of states

with n + 1 quanta is lifted by 2g
√
n + 1 due to atom-photon

interaction, leading to vacuum Rabi splitting.
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Jaynes-Cummings Model (Cont.)

In the dispersive regime (∆ ≫ g), coherent exchange of quanta is

suppressed, and interaction occur via virtual photon processes. The

effective dispersive Hamiltonian takes the form

Ĥdisp ≈ ℏω0
r â

†â+
ℏω0

q

2
σ̂z + ℏχâ†âσ̂z

Here, ω0
r and ω0

q are the dressed (renormalized) resonator and qubit

frequencies, respectively, and χ is the qubit-state-dependent dispersive

cavity shift.

This dispersive coupling is Quantum Non-Demolition (QND) with respect

to photon number and qubit polarization, meaning it commutes with

both, making it ideal for qubit readout.
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Jaynes-Cummings Model (Cont.)

Figure 1: Energy spectrum of

uncoupled and dressed states in the

dispersive regime

Figure 2: Energy spectrum of

uncoupled states in the resonant

regime
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Wiring up Quantum Systems with Transmission Lines

• A complete description of quantum electrical circuits must account

for their coupling to the environment, including measurement

apparatus and control circuitry.

• The environment plays a dual role: unavoidable unwanted coupling

leading to decoherence, but also necessary coupling for control and

observation.

• A common model is the semi-infinite coplanar waveguide

transmission line. This configuration leads to a densely packed,

continuous frequency spectrum of modes.

Ĥtml =

∫ ∞

0

dωℏωb̂†ωb̂ω

where the mode operators satisfy [b̂ω, b̂
†
ω′ ] = δ(ω − ω′)

21
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Wiring up Quantum Systems with Transmission Lines (Cont.)

Considering capacitive coupling of the line to the oscillator at x = 0, the

total Hamiltonian takes the form

Ĥ = Ĥtml + ℏωr â
†â+ ℏ

∫ ∞

0

dωλ(ω)(b̂†ω − b̂ω)(â
† − â)

where λ(ω) = (Cκ/
√
cCr )

√
ωrω/2πν is the frequency-dependent

coupling strength, with Cκ the coupling capacitance and Cr the resonator

capacitance.

Assuming λ(ω) to be sufficiently small relative to ωr

Ĥ ≈ Ĥtml + ℏωr â
†â+ ℏ

∫ ∞

0

dωλ(ωr )(âb̂
†
ω + â†b̂ω)
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Input-Output Theory

• Input-output theory is a framework for describing the interaction

between quantum systems (e.g., cavity) and external fields (e.g.,

propagating waves in transmission lines).

• We divide the transmission line signal into left moving and right

moving fields and define the input and output fields as

b̂in(t) =
i√
2π

∫ ∞

−∞
dω b̂Lωe

−i(ω−ωr )t

b̂out(t) =
i√
2π

∫ ∞

−∞
dω b̂Rωe

−i(ω−ωr )t

satisfying
[
b̂in(t), b̂

†
in(t

′)
]
=
[
b̂out(t), b̂

†
out(t

′)
]
= δ(t − t ′)

• A key insight from this theory is that a semi-infinite transmission

line acts as a simple resistor by carrying energy away from the

system as propagating waves.

• Conversely, the input field can be used to drive and control the

system.
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dω b̂Rωe

−i(ω−ωr )t

satisfying
[
b̂in(t), b̂

†
in(t

′)
]
=
[
b̂out(t), b̂

†
out(t

′)
]
= δ(t − t ′)

• A key insight from this theory is that a semi-infinite transmission

line acts as a simple resistor by carrying energy away from the

system as propagating waves.

• Conversely, the input field can be used to drive and control the

system.
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Thank you
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