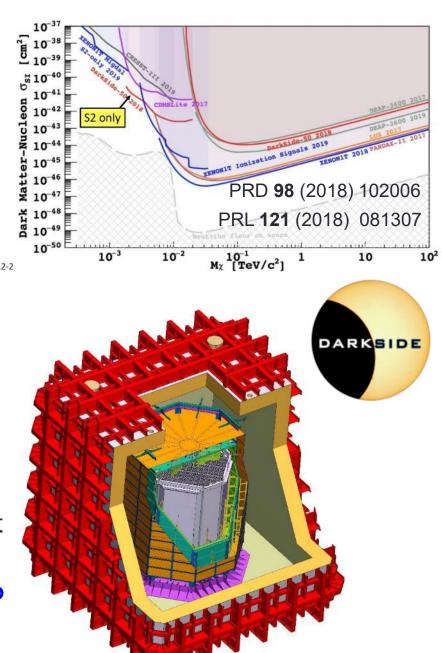
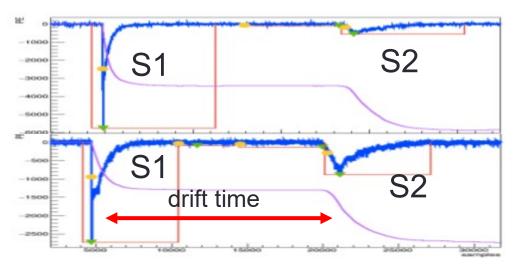


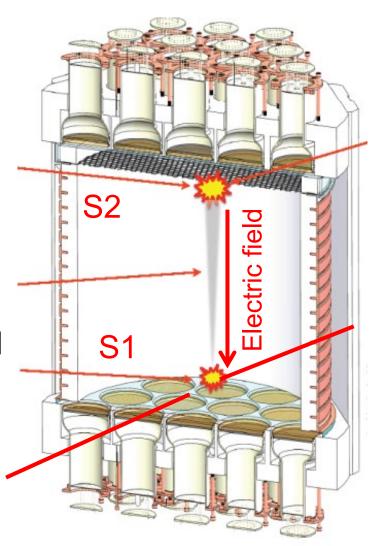
L. Pandola (LNS) on behalf of the DarkSide LNS Group


Physics background

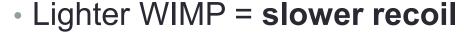
- Search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs)
 - WIMP is a favourite candidate, but there are many others
- Signature: low energy (< 100 keV) nuclear recoil produced by WIMP elastic scattering
 - Backgrounds: e- recoils, neutron-induced recoils
- Global effort worldwide:
 - Rates in the range from 10⁻¹ to 10⁻⁶ events / (kg·day)
 - next generation experiments should eventually reach exposures in the range of ktonday
 - Need very low background level (and underground site)


Physics background

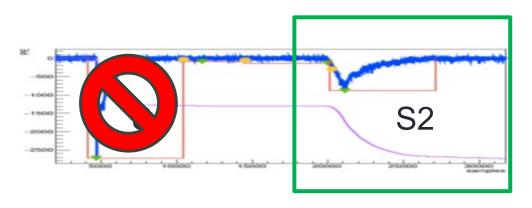
- DarkSide at Gran Sasso
 Laboratory, WIMPs search using a dual-phase TPC with low-radioactivity LAr
 - Operated a 50 kg TPC (DarkSide-50)
 - Next step: 50 ton (20 ton fiducial) LAr
 TPC (DarkSide-20k)
 - Novel light readout with SiPM
 - Getting ready for data in 2027, exposure O(100) ton yr
 - Expected sensitivity 10⁻⁴⁷ cm² @ M_W =1
 TeV/c²
 - <u>Next-next step</u>: global worldwide effort (ARGO, 300 ton LAr)
- More sensitive to low-mass WIMP than Xe, due to the lighter target

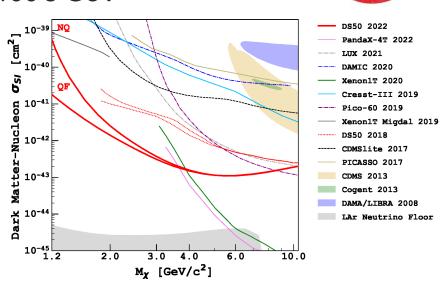

Dual-phase Ar TPC & low-mass WIMPs De

The working principle...


 Allows for full 3D reconstruction (and hence fiducialization)

- (X,Y) from the S2 light pattern in the top sensors
- Z from the drift time between S1 and S2
 - Many 10's or 100's of μs
- Designed for optimal sensitivity to "standard" (100 GeV) WIMPs



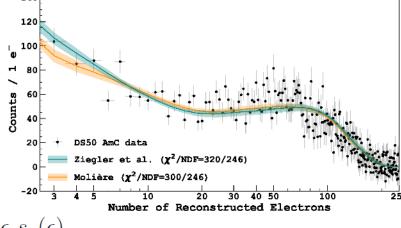

The search for low-energy WIMPs

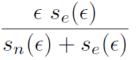
- LAr TPC sensitive in the search of low-mass WIMPs
 - A few GeV instead of the "standard" 100's GeV

- O(1 keV), instead of 20-100 keV
- Challenging!
 - S1 too small to be detected
 - S2-only events
 - Only ionization detected (~20 PE/e-)
 - No sensitivity to Z coordinate

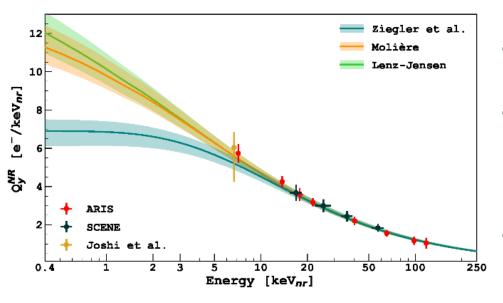
Agnes et al. PRD 107 (2023) 063001

- Analysis sensitive to ionization yield for keV NRs
 - Poorly known for Ar
 - Literature down to 6 keV


Ar NRs ionisation yield at low energy


- Measurement within DS-50, with AmC and AmBe neutron sources
- Dedicated 2-parameter model

Thomas-Imel
$$1 - r = \frac{1}{\lozenge N_i} \ln(1 + \gamma N_i)$$


$$Q_y^{NR} = \frac{N_{i.e.}}{E_{nr}} = \frac{(1 - r)N_i}{E_{nr}}$$

$$N_i = \beta \ \kappa(\epsilon) = \beta \frac{\epsilon \ s_e(\epsilon)}{s_n(\epsilon) + s_e(\epsilon)}$$

Agnes et al. PRD 104 (2021) 082005

- Different screening models for s_n, possible low-E suppression for se
- Constrains only by small low-energy sample from the AmC calibration of **DS-50**
 - No closed 2-body kinematics
- Strong case for a LAr direct measurement at 1-5 keV_{nr}

The ReD project...since 2019

- ReD project, three-fold goal:
 - check if a dual phase LAr TPC has sensitivity to the direction of Ar recoil
 - characterize the response of the LAr TPC to very low-energy recoils (< few keV)
 - act as a test bench of the technical solutions for DarkSide-20k TPC
- Phase 1 (Naples) Characterization of the TPC
 - Stability over time scale of months
 - Check that performance OK for phase 2
- Phase 2 (LNS) Directionality run
 - TANDEM beam LNS (February 2020)
 - No indication for directionality
- Phase 3 (INFN Catania) Low-energy run with ²⁵²Cf
 - Data taking → Nov 2022 Jun 2023
 - Preliminary results at TAUP2023
 - Getting ready for full release @TAUP2025

EPJ C 81 (2021) 1014 Eur. Phys. J. C (2021) 81:1014 THE EUROPEAN https://doi.org/10.1140/epjc/s10052-021-09801-6 PHYSICAL JOURNAL C Regular Article - Experimental Physics

Performance of the ReD TPC, a novel double-phase LAr detector with silicon photomultiplier readout

P. Agnes¹, S. Albergo^{2,3}, I. Albuquerque⁴, M. Arba⁵, M. Ave⁴, A. Boiano⁶, W. M. Bonivento⁵, B. Bottino^{7,8} S. Bussino^{9,10}, M. Cadeddu⁵, A. Caminata⁷, N. Canci¹¹, G. Cappello^{2,3}, M. Caravati^{5,12}, M. Cariello⁷

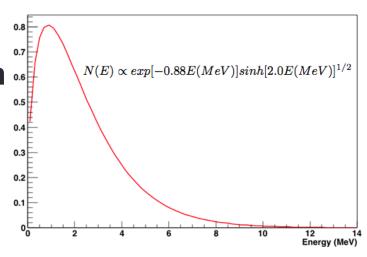
EPJ C 84 (2024) 24

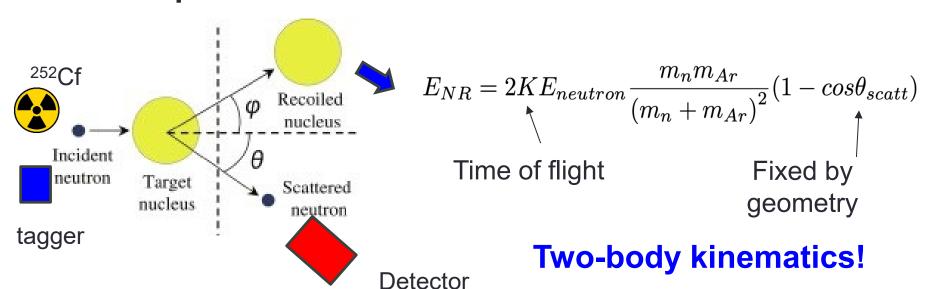
(2024) 84:24 https://doi.org/10.1140/epjc/s10052-023-12312-1 Regular Article - Experimental Physics

THE EUROPEAN PHYSICAL JOURNAL C

Constraints on directionality effect of nuclear recoils in a liquid argon time projection chamber

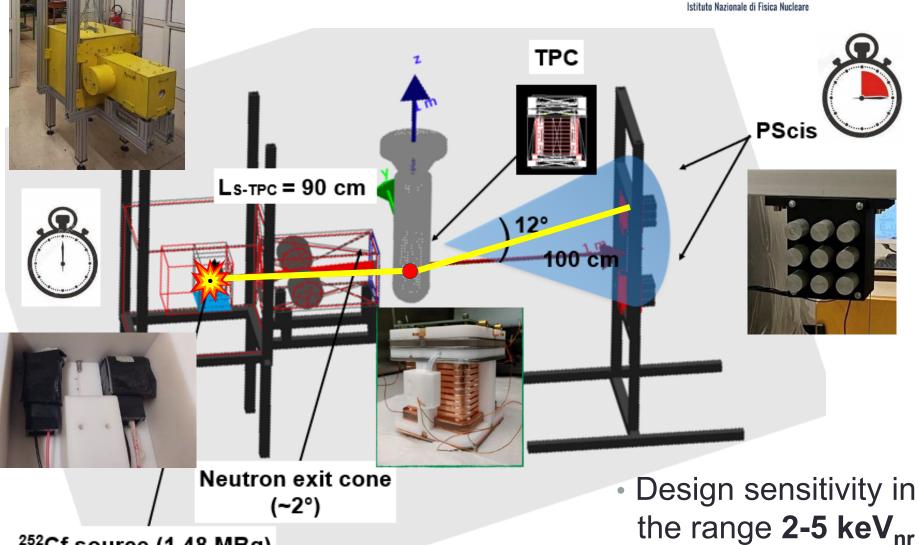
DarkSide-20k Collaboration


Characterization of low-energy argon recoils with the ReD experiment



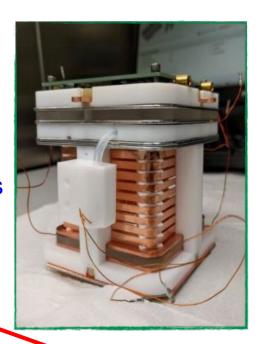
The working principle

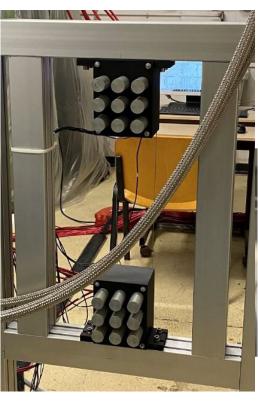
- Strategy: Produce Ar recoils of known energy in the TPC by (n,n')
- Neutrons from a ²⁵²Cf fission source
 - Neutrons O(2 MeV) and up to 10 MeV
 - Appropriate to produce NR of a few keV



- Close detectors (BaF₂) to tag fission events
- Neutron spectrometer to detect neutrons scattered off-Ar

The ReD conceptual layout



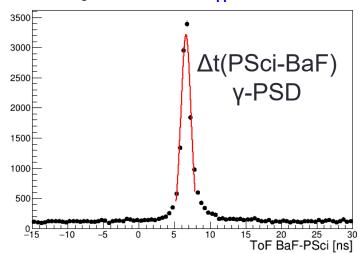

²⁵²Cf source (1.48 MBq) and BaF₂ taggers

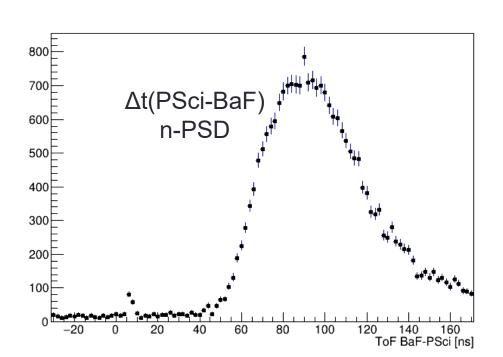
Conceptual design from University of Sao Paulo

The ingredients

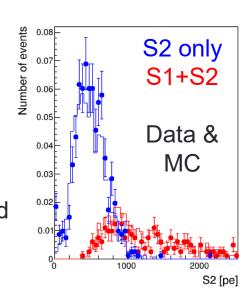
- Our ReD TPC
 - Light readout: 5x5 cm² SiPM
- A neutron spectrometer
 - 18 1-in EJ-276 plastic scintillators
 - ToF STOP
 - Featuring n/γ discrimination
- Fission tagger
 - Two BaF₂ detectors
 - ToF START
- The ²⁵²Cf source (0.86 MBq)
 - About 26 kBq SF
 - Collimator of opening angle ~2°
 - Shines the entire TPC at 1 m distance
- Tag Ar recoils down to ~1-2 keV_{nr}

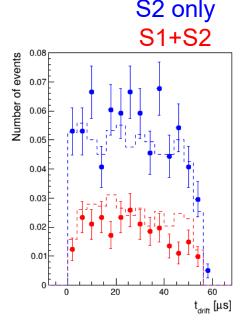
The real thing at





Data taking: finding neutrons...

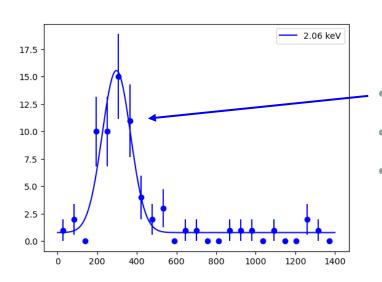

- Data taking with ²⁵²Cf from Jan to Mar, 2023
- Trigger logic: "any BaF" ∧ "any PSci"
 - Tagging ~60% of SF events
 - TPC acquired in follower mode (may fail to trigger in S1)
 - Event rate dominated by γ-rays and accidentals
- Selection of candidate neutrons by time of flight and PSD
 - About 28 events/hour (0.3%)
- ToF resolution ~ 0.7 ns
- Event-by-event E_n at <5%

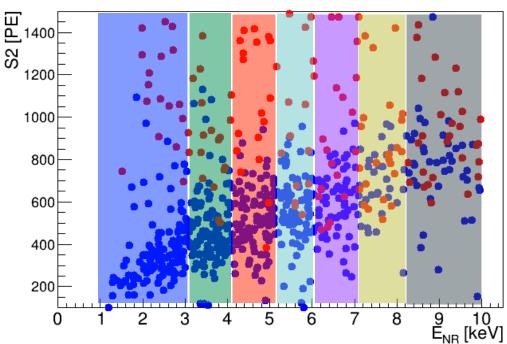


... interacting in the TPC

- Look for TPC events offline
 - Analysis flow: de-convolution of SiPM response function, TPC pulse finder
- From MC: pulse finder fully efficient for S1 > 25 PE, S2 > 4 e-
- Selection cuts:
 - One S2 within 65 μs from BaF₂ and optionally, an S1 (< 100 PE)
 - If S1 available, consistent BaF-TPC tof
 - No tails of previous S2 pulses
 - (x,y) in the central 4x4 cm region (fiducialization)
- Final sample: ~800 passing all cuts, out of 2300 candidate neutron events w/ TPC signal
 - 70% are S2-only (~ as in MC)
 - Expected: S1~8 PE for 5 keV_{nr}
 - From MC, most S1+S2 are expected to be multiple neutron scattering (→ no kinematic correlation)

The sample of low-energy recoils

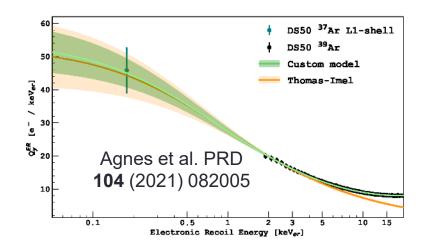

- Get E_{NR} from time of flight (and geometry), uncert. ±7%
- E_{NR} down to 1-2 keV
- Most S1+S2 outliers: multiple neutron scattering
 - Confirmed by MC
 - For genuine NRs below 5 keV, S1 always too small for the pulse finder

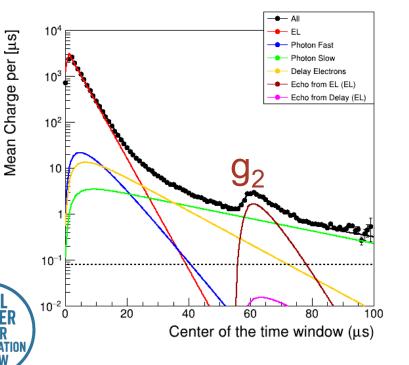

For higher NRs, some S1 reconstructed by the pulse finder → S1+S2

events populate the signal band Events S2 only ☐ 1400 0.06 S1+S2 S2 only 0.05 S1+S2 Data & 0.04 1000 MC 0.03 800 0.02 600 0.01 400 200 9 E_{NR} [keV] E_{NR} [keV]

S2 vs. E_{NR}

- Slice $(E_{NR},S2)$ data in 7 intervals in E_{NR} (~ equally populated)
 - Take range 1-10 keV only
- For each slice, unbinned maximum likelihood fit of the S2 distribution
 - gaussian + constant
 - Constant term accounts for multi-scattering background





- S2: mean value of the gaussian
- < E_{NR} >: mean energy of the events
- Procedure validated with the MCgenerated data sets
 - Unbiased, provided S1+S2 events are kept

From S2 to Ne: g₂

- Ionization gain g₂ (PE/e-)
 - Detector property: must be measured by the ReD data
- Two different approaches
- Calibration with ²⁴¹Am (60 keV γ-ray)
 - S2 value from ²⁴¹Am data
 - Expected Ne calculated by MC, using the Qy(ER) model from DS50
- «Echo» events (S3): photoionization of the cathode from the S2 pulse
 - Delay of 55 µs with respect to S2
 - A-few electron signal
 - Required the development of a full integrated shape model
- Consistent results: ~18.0 PE/e-
- Final Qy vs. E_{NR} measurements down to 2 keV

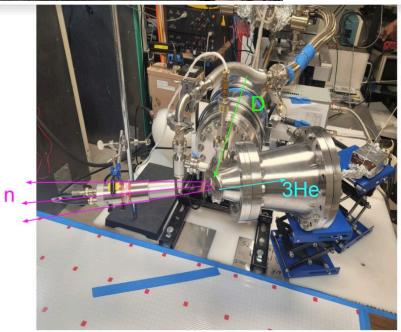
Status and next steps

- ReD as a part of the TDR of DarkSide is completed
 - Collaboration focused on the construction of the DarkSide-20k detector
- Data analysis: machinery ready and tested, analysis completed
 - Analysis under Collaboration Review
 - Final Qy vs. E_{NR} measurements down to 2 keV
 - Impact on DS20k sensitivity curves, discrimination of screening models
 - Two papers being drafted
- ReD+: follow-ups in Catania to further improve and push sensitivity down to 0.2 keV:
 - New improved calibration with ²⁵²Cf
 - Funded as a two-year PRIN project, INFN, UniCt, UniNa (183k€)
 - Started in September 2023 → end March 2026
 - Measurement using 2.4 MeV neutrons from a DD gun
 - Joint project with University of Sao Paulo (DDgun funded as a FAPESP grant)
 - Delivered to USP: being commissioned and then shipped to LNS in 2025

ReD+ activities

- ReD+ measurements (Cf & DD gun) both require:
 - New TPC, bigger than the old one (and cylindrical)
 - TPC being redesigned and built, SiPM readout (UniNA & LNS-INFN)
 - Refurbishment of the cryogenic system: ongoing in Naples
 - Larger neutron spectrometer (18 more PSci bought, UniCT)
 - Reduce the accidental background:
 - Improvement in the source shielding on the front side (UniCT)
 - Reduction of the passive volumes using new mechanical supports for Psci (UniCT)
 - Funding available under the PRIN_2022JCYC9E (LP: 6%)
- Comparable timelines for the two measurements
 - ReD+: Oct 2023- Mar 2026 (PRIN) → March 2026
 - DD gun: 2026-2027
 - Need of a "radioprotected" experimental area at LNS → Sala 40°
- Push sensitivity down to 0.2 keV_{nr}

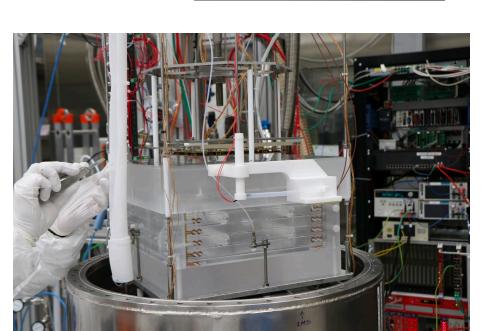
DD-Gun


Joint project with University of Sao Paulo (FAPESP grant)

$${}_{1}^{2}D + {}_{1}^{2}D \rightarrow {}_{1}^{3}T (1.01 \text{ MeV}) + p^{+} (3.02 \text{ MeV}) 50\%$$

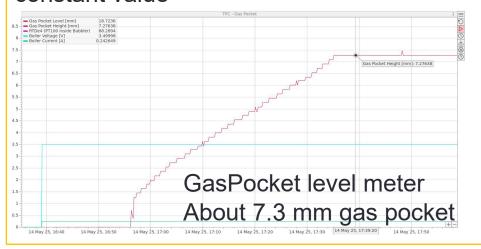
 $\rightarrow {}_{2}^{3}He (0.82 \text{ MeV}) + n^{0} (2.45 \text{ MeV}) 50\%$

- DD-gun: up to 10⁷ n/s of quasimonochromatic neutrons (2.4 MeV)
 - Commercial (tabletop) device by Adelphi
 - Very small x-ray background
 - Delivered to USP in 2024: being commissioned now
 - Neutron tagging by detecting the accompanying ³He with a Si detector (demonstrated @Adelphi and @USP)
 - Different systematics and higher rate than ²⁵²Cf
 - Will be shipped to LNS within 2025



Activities in 2024/5: Proto-0 @ Na

- Operating a TPC (7 kg active mass), equipped with the very same readout SiPM tiles developed for DS-20k
- LNS contributing by design and realization of mechanical parts to host a capacitive levelmeter
 - Important to monitor the level of liquid argon
 → not available in ReD
- First cooldown in July 2024
 1) Campaign-1 (ended on December 2024)
 - 2) Campaign-2 ongoing
- LNS contributed to:
 - Data taking shifts (3 weeks)
 - MC simulation studies
 - Data analysis
 - 83mKr source procurement

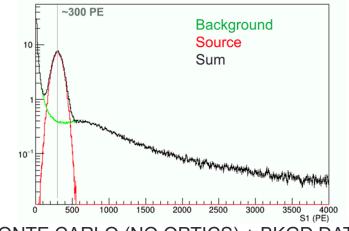


Proto-0 @ Na

Gas pocket formation:

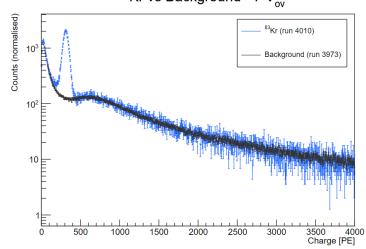
boiler ON @ 0.84 W -

about 1h to get the GasPocket-meter at constant value


NOA@LNGS

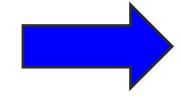
LNS contribute to **production shifts**:

- VETO: vTiles production completed,
 Goal: complete vPDU characterization by Oct!
- TPC: 10% of PDU production completed, test ongoing in Naples


83mKr source in single phase

Diffuse source decaying with two β emission (32.1 + 9.4) keV

MONTE CARLO (NO OPTICS) + BKGD DATA


^{83m}Kr vs Background - 7 V_{ov}

Attività e richieste 2026 – gruppo LNS

- Il progetto ReD in DarkSide è in conclusione. Attività 2026:
 - Preparazione pubblicazione, presentazione risultati conferenze
 - Non sono previste spese
- Attività legate al PRIN ReD+ e al progetto DDgun
 - Finanziamenti extra-CSN2
- Anche Proto-0 termina nel 2025 per la CSN2
 - Attività di analisi dati, etc.
- Attività 2026 sotto l'ombrello di DarkSide CSN2:
 - Contributo all'attività sperimentale di testing per le TPC-PDU a Napoli
 - Sviluppo software (offline, Monte Carlo, analisi) e fenomenologia per DarkSide-20k
 - Possibili turni a NOA
- Richieste finanziarie ridotte
 - Missioni per meeting ed attività a Napoli e LNGS
 - Da integrare per eventuale turnistica

Preliminary

Richieste 2026 – gruppo LNS

M. Gulino (Resp Loc.)	Associato (UniKore)	70% (TBC)
L. Pandola	Ricercatore II	50% (+6% PRIN) = 56%
G. Manicò	Associato (UniCt)	40% (TBC)
N. Pino	Ass. Ricerca	0% (+100% PRIN) (end 11/2025)
TOTALE		1.60 w/o PRIN (1.37 nel 2025)
		2.66 FTE w/ PRIN

Preliminary

Missioni	 Contatti con altri gruppi, meeting di Collaborazione, partecipazione turni misura 	8 k€
Consumo	- (da definire)	TBD k€
TOTALE		8 k€

Richieste ai LNS

- Per la misura ReD+ con ²⁵²Cf (PRIN)
 - Richiesta di spazio sperimentale attrezzato (LAN, quadri elettrici, carroponte, uso gas in bombola ...) in zona controllata, circa 4 x 10 m² [email: 02/04/2025]
 - Sala 40 gradi, concordata con Direttore, capi Div Ric e Tecnica, RSPP
 - Riscontro immediato da Divisione Ricerca (Servizio Utenti), Divisione Tecnica e Servizio Radioprotezione (grazie!)
 - Uso non esclusivo della sala
 - Supporto del Servizio Utenti (Rep. Elettronica, Rep. Apparati Sp.)
 - Supporto dei Servizi Amministrazione, Fondi Esterni, Radioprotezione
- Per le successive fasi con DD gun
 - Stesso spazio sperimentale (uso non esclusivo)
 - DD gun in prestito temporaneo da FAPESP, da restituire entro inizio 2028
 - Supporto Amministrazione per pratiche doganali
 - Supporto Radioprotezione per pratiche autorizzative
 - Stesse richieste di supporto ai Servizi dei LNS