

FEROCE

Front-End Rdma Over Converged Ethernet

Area di ricerca: Rivelatori, Elettronica, Calcolo Responsabile nazionale: Andrea Triossi (Unipd – INFN Padova) Unita partecipanti: INFN sezione di Padova Laboratori Nazionali di Legnaro

26 Giugno 2025

Objectives

- Processing power is important as an efficient data movement
- In a DAQ system a large fraction of CPU is engaged in networking
 - Data manipulation (several copies)
 - Latency increase and throughput reduction
- Zero-copy is obtained by adding RDMA layer to the network stack

- FEROCE wants to move the adoption of the network protocol to the data producer
 - Front-end initiates the RDMA transfer
 - No point-to-point connection between front-end and back-end
 - Dynamical switching routing according to node availability

Methodology

- Several network stacks implementing RDMA
 - InfiniBand, RoCE, iWARP...
- RoCE (RDMA over Converged Ethernet)
 - Based on Ethernet networks
 - Industry-standard
 - Multi-vendor ecosystem
 - RoCEv2 packet switching (layer 2 and 3)

Context and trends

- Efficacy of RDMA already be proven @INFN: <u>NaNet, APEnet</u>...
- FPGA commonly adopted for implementing high throughput RDMA network stacks in datacenter even for <u>physics experiments (e.g. ATLAS)</u>
- <u>DRD7 WP5</u>: options for future readout links
 - Increasing complexity in Front-End with datalink following Ethernet bandwidth trend
 - R&D on 100G SiPh
 - Several investigations ongoing, from the no-backend to the smart-switch (concentrator of synchronous FE links to asynchronous Ethernet)

HLS experience

• ETH Zurich Network Stack

- Entirely written in HLS
- 10/100G via AMD 10G and 100G MAC IPs
- TCP/IP support for out of band communication
- DDR4 memory and recently HBM support
- Used in many projects, wide community

- Reads/writes data from/to the host machine's memory through the xDMA
- Cannot stream from FPGA logic directly
- Bound to AMD ecosystem
- Quite resource hungry
- Not so easy to decouple TX and RX
- Very useful starting point for getting familiar with the protocol and the verbs but not suited for our needs
- It was decided to rewrite the stack at RTL in Verilog

Lite-RoCEv2 Module

- Based on <u>Alex Forencich UDP/IP 1G/10G/25G</u> open-source network stack for low level layers, with minor modifications
- Completely written at RTL (Verilog)
- Only RDMA SEND and WRITE with immediate for completion of the transfer
- Slow control based on UDP (setting QP, etc.)
- Main <u>GitHub code</u>
 - Supported speeds 10G/25G/100G
 - FAST CRC32
 - Support scripts for <u>packet</u> <u>verification</u>
- Presented at <u>CHEP 2024</u>

Lite-RoCEv2 Module

- Data is transferred using AXI4-Stream interface
 - Headers and data transmitted separately
- Added 100G datapath
- UDP checksum completely disabled
- Added ICRC insertion module
 - For 10/25G CRC32 is computed for 64b data words using a modified version of FCS
 - For 100G completely new module computes CRC parallelly on 512b data words
- Added ICMP echo reply server
- Added RoCEv2 TX
 - Supports for RDMA SEND, WRITE, with of without IMMEDIATE operations
 - FSM to splits AXI data stream in RDMA WRITE ONLY, FIRST, MIDDLE or LAST based on the selected MTU
- Added RoCEv2 RX
 - Only RDMA ACK packets are decoded
 - Used for latency and throughput measurements

Speed	Datapath	CLK Freq
10G	64b	156.250 MHz
25G	64b	390.625 MHz
100G	512b	322.266 MHz

Lite-RoCEv2 TX

- Generate the Queue Pair parameter from the receiver side and allocate memory
 - Remote QP number
 - Remote Virtual Address
 - Registration key (to access the memory)
 - Remote Packet Sequence Number (PSN) needed to check stream's structure
- Send such parameter to FPGA on a sideband channel (UDP in our case)
- Stream data through the data AXI stream port
- Notify somehow the receiver that the transfer is completed (Immediate message/sideband)
- Latency and Throughput measured with the PSN of the sent packet and received ACK
- Without re-transmission, if a packet is not received properly the connection must be closed. Re-transmission needed for lossless networks

Lite-RoCEv2 Re-transmission

- Data continuously streamed and written in memory, PSN used as address
- RAM can be any kind of memory supporting AXI MM interface
- Good ACK reception resets the timeout counter
- Timeout or NAK reception trigger a retransmit
- Retransmit starts from the last ACKed PSN + 1 or

 the PSN in the NAK
- Upon reaching the last buffered PSN the normal data stream is resumed
- Timeout and retry values are set as parameters
- Only single QP supported

Latency and throughput

- Latency is computed averaging the time from each packet's transfer start and its acknowledge (round trip)
- Throughput is computed considering the payload size and the time from first packet sent and last acknowledge received
- First transfer in the QP must be small (warm-up), it's needed to for caching the QP info (NIC side), otherwise packet loss/retransmission is observed
- After that, no packet loss/retransmission is observed
- SYNC and END messages are outside the RoCEv2 protocol, but RDMA WRITE IMMEDIATE packet can trigger a completion message upon finishing

Point-to-point test

- Implementation on VCU118 (Virtex Ultrascale+)
- NVIDIA SN2100 16x100G network switch with cumulus linux
- Test performed at 10/25/100G with fixed MTU 4096B but variable message size

Congestion test

- Two senders one receiver
- All participants set at the same speed, forcing congestion on the receiver NIC
- No high-level congestion avoidance protocol only ethernet flow control
- Pause frames sent to stall the TX stream, latency increase
- Total throughput similar to point-to-point (93%)
- Slight throughput asymmetry in transmission probably do to unbalanced use of priorities

	Latency	Throughput			
10G	15 µs	8.8 Gbps			
25G	20 µs	22.2 Gbps			
100G	25 μs	96.5 Gbps			
Ν	Aessage size o	of 1 MB			

Resources

10/25G Floorplan

ολοχ	τίλοχ	X0Y2	ко¥з	X0Y4	έλox	X0Y6	έλοχ	8,0X	<u> 6</u> , юх	X0Y10	τίλοχ	X0Y12	X0Y13	X0Y14
X1Y0	хілі	X1Y2	X1Y3	XIY4	ΧΊΥS	9/LX	XIY	X1Y8	6/IX	XIVIO	хіті	XIY12	XIY13	XIY14
X2Y0	X2Y1	X2Y2	X2Y3	Х2Ү4	Х2Ү5	X2Y6	X2Y7	Х2Ү8	Х2Ү9	X2Y10	11Y2X	X2Y12	X2Y13	Х2Ү14
X3Y0	X3Y1	X3Y2	X3/J3	X3Y4	X3Y5	ХЗҮб	X3Y7	ХЗҮВ	676X	X3Y10	X3YÌ1	X3Y12	X3Y13	X3Y14
X4Y0	X4Y1	X4Y2	X4 Y3	X4Y4	X4Y5	Х4Ү6	X4Y7	X4Y8	Х4Ү9	X4Y10		X4Y12	X4Y13	X4Y14
XSYO	X5Y1_	X5Y2	X5Y3	SLRO 74.5X	X5Y5	X5Y6	Х5Ү7	X5Y8	SLR1 6/SX	X5Y1			X5Y13	X5Y149

100G Floorplan

			X3Y14	X4Y14	SLR2
235 2010			X3V13	X4Y13	X5Y13
		X2Y12	X3Y12	X4Y12	Х5Ү <u>12</u>
ΤÍΛΟΧ	IIVIX	11Y2X	хзүіі	X4Y11	X5Y1 <u>1</u>
0Tİ.QX	XIYIO	X2Y10	X3Y10	X4710	XSY10
<u>б</u> лох	671X	X219	б, ех	Х4Ү9	SLR1
s, vox	X1Y8	Х2Ү8	X3Y8	X4Y8	X5Y8
έλox	X1Y7	X2Y7	; ZYBX	X4Y7	X5Y7
άγ	У Т Х6	Х276	ХЗҮ6	X4Y6	X5Y6
s	X1Y5	X2Y5	3Y5	X4Y5	XSYS
X0Y4	X1Y4	X2Y4	X3Y4	X4Y4	SLRO 14 SX
έλοχ	X1Y3	Х2ҮЗ	X3Y3	X4Y3	X5Y3
X0Y2	X1Y2	X2Y2	X3Y2	X4Y2	X5Y2
τίλοχ	1/1X	X2Y1	τ×:	X4Y1	XSY1
ολοχ	0/LX	X2Y0	X3Y 0	X4Y 0	X5Y0

_		Speed	LUTs (k)	REGs (k)	BRAM	URAM
_	\//ithout	10G	13	16	11.5	0
	Potranc	25G	13	16	11.5	0
_	Relians	100G	30	43	24.5	0
	\ \ /i+b	10G	16	19	13.5	8
	Potranc	25G	16	19	13.5	18
	NEUdiis	100G	37	52	24.5	64

• Example of floorplan for 10/25/100G implementations

- ILAs used for debugging and monitoring
- Re-transmission memory buffer set to about 160 μs worth of data. 2MB for 100G, 0.5 MB for 25G and 0.26MB for 10G

Porting to flash-based FPGA

- Tested on the evaluation kit of Microchip Polarfire
- Interfaced with Microchip 10G MAC and PHY
- Fw occupancy very similar to AMD FPGA

LUT (k)	DFF (k)	LSRAM	uSRAM
13	14	24	108

Chip Planner

Prospective applications

- CMS (CSN1)
 - L1T Scouting is a project aiming at acquiring the L1 primitives at the full bunch crossing rate
 - It is meant for HL-LHC but a demonstrator based on commercial electronic is already deployed
 - At present as DAQ link it adopts a lite version of the TCP/IP protocol at 100G → move to lite-RoCEv2
 - Next Generation Trigger is designing new electronics for scaling to 400G
- Known user of Lite-RoCEv2
 - HEIG-VD institute (CH) evaluating to use it in SKAO

Prospective developments

- Porting the stack to Versal
 - $100G \rightarrow MRMAC$, $200G/400G \rightarrow DCMAC$
 - Might be useful to use the Versal PS. Connection manager? QP management?
 - Software development to read this huge data stream, 200G and 400G for sure are non-trivial tasks
 - Ring buffer
 - Backpressure
- Unburdening CPU by serving data directly to GPU memory
 - RDMA to GPU (GPUDirect)
 - Enabling CUDA-based applications on front-end data

Project organization

- Two working package
 - WP1 Front-end firmware core
 - WP2 Application layer and emulation
- Four milestones

100% DONE • 31 Dec 2024

ON TRACK • 31 Dec 2025

- 100% DONE 31 Dec 2023M1.1Setting up of a global-oriented simulation environment for
a small appliance of the RoCE stack (WP1)100% DONE 31 Dec 2023M1.2Testing a RoCE network based on COTS products (WP2)
 - M2 Complete test of the scalable RoCE firmware stack for front-end (WP1+WP2)
 - M3 Complete test of the developed firmware on a radiation tolerant front-end FPGA (WP1+WP2)

			2023			2024		2025		
		Q1	Q2	Q3	Q1	Q2	Q3	Q1	Q2	Q3
WP1	Front-end firmware core	Developme	nt light RoCE	Simulation light RoCE	Implementi data	ng different paths	Test FE RoCE on network	Porting to flag	sh technology	Test on flash FPGA
WP2	Application layer and emulation	Soft RoCE	Setting up RoCE	Test of RoCE network	Acquisitic	on system	Test FE RoCE on network	GPUdirect	Test of GPUdirect	Test on flash FPGA

Contributions

- Talks
 - G. Bortolato, Front-End RDMA Over Converged Ethernet, real-time firmware simulation, Topical Workshop on Electronics for Particle Physics (TWEPP), Geremeas, Italy, 2023
 - G. Bortolato, Front-End RDMA Over Converged Ethernet, real-time firmware simulation, Technology & Instrumentation in Particle Physics (TIPP), Cape Town, South Africa, 2023
 - G. Bortolato, Front-End RDMA Over Converged Ethernet, lightweight RoCE endpoint, Conference on Computing in High Energy and Nuclear Physics (CHEP), Kraków, Poland, 2024
 - A. Triossi, FEROCE and the journey of data from the detector to the computing farm, Workshop on Electronics for Physics Experiments and Applications @INFN, Torino, Italy, 2025

• Publications

- G. Bortolato et al., Front-end RDMA over Converged Ethernet, real-time firmware simulation, Journal Of Instrumentation, 10.1088/1748-0221/19/03/C03038
- G. Bortolato et al., FEROCE: Front-End RDMA Over Converged Ethernet, a lightweight RoCE endpoint, submitted to EPJ WoC