

Laboratori Nazionali di Legnaro – INFN

A new CSN5 experiment proposal

Responsabili Nazionali : A. Andrighetto, A. Arzenton

June 2025

ISOLPHARM method and collaboration

- ISOLPHARM experiments: past and present
- ISOLPHARM_APEX organization
- Conclusions

ISOLPHARM method and collaboration

ISOLPHARM experiments: past and present

ISOLPHARM_APEX organization

Conclusions

The ISOLPHARM project: 4 pillars

Also... Scientific and training hub

Collaboration infrastructures

The ISOLPHARM facility

7

IRIS: ISOLPHARM Radionuclide Implantation Station

ISOLPHARM method and collaboration

ISOLPHARM experiments: past and present

ISOLPHARM_APEX organization

Conclusions

Radiopharmaceutical frame

Experiments: why ¹¹¹Ag?

¹¹¹Ag properties

- **β**⁻ emitter (average energy **360 keV**)
- Good half-life (7.45 days)
- Average tissue penetration (1.8 mm)
- Medium energy γ rays -> SPECT?

 \rightarrow In the market no radiopharmaceuticals radiolabeled with silver-111

 $\rightarrow\,$ Silver-111 can be produced @ SPES with high purity & high production rate

 \rightarrow No isobaric radioactive contamination in the implantation foil (also with LASER off!)

 \rightarrow ¹¹¹Ag exhibits theranostic properties similar to ¹⁷⁷Lu which was recently approved by FDA

 $\rightarrow\,^{\rm 111}{\rm Ag}$ behaves similarly to $^{\rm 186}{\rm Re}$, recently studied in phase I/II clinical trials

ISOLPHARM: over 10 years of activity

Interdisciplinary study group on production of medical radioisotopes at SPES

Simulations and feasibility evaluation of Ag as radiopharmaceutical precursor

First production of ¹¹¹Ag in reactor and beginning of *in-vitro* and *in-vivo* testing

Characterizing the 2D/3D *in-vitro* therapeutic effect of ¹¹¹Ag and its imaging capabilities

First nuclear measurements of radionuclide production at SPES

Technological aspects of radionuclide production (target, ion source, implantation...)

ADMIRAL achievements

WP1 - Radiopharmaceutical production

- Optimization of chelators for Ag
- Optimization of Ag production and separation
- Development of 3D scaffolds for prostatic cancer cells

WP2 - β imaging

- 2D β imager "DUMBO" construction
- Characterization tests with ¹¹¹Ag

WP3 - y imaging

- ³¹¹Ag γ camera prototype development
- Characterization tests with ¹¹¹Ag

WP4 - Targeted radiobiology

- 2D survival of different cell lines treated with free ¹¹¹Ag
- Protocol for experiments in 3D scaffolds
- Cell dosimetry and DNA damage/repair models

Open questions after ADMIRAL

- 1) Which are the radiobiological advantages of $^{111}\mbox{Ag}$ with respect to other $\beta^{\mbox{-}}$ emitters?
- 2) Can ¹¹¹Ag be used in radiopharmaceutical therapy against prostatic tumors with PSMA-617 (already used with ¹⁷⁷Lu) as a targeting agent?
- 3) Can its γ imaging be used in a SPECT?
- 4) Can its β imaging be used for cell uptake measurements?
- 5) Can the first SPES nuclides provide interesting radiobiological data?

ISOLPHARM_APEX (2026-2028)

¹¹¹Ag-PSMA-617 EXperiments

Radionuclide production at LENA and SPES

Main goals

- 1) Understanding the dosimetry of ¹¹¹Ag-PSMA-617 in living systems such as cells, small animals and human patients.
- Studying this radiopharmaceutical in cancer cell cultures in 2D monolayers and in 3D tissue-mimicking scaffolds.
- 3) Observing the biodistribution and the effects of theranostic ¹¹¹Ag-PSMA-617 on small animals.
- 4) Investigating the radiobiological response to low-doserate radiation using the first nuclides obtainable at SPES.

IS IPHARM The long road to (radio)pharmaceuticals

ISOLPHARM method and collaboration

ISOLPHARM experiments: past and present

ISOLPHARM_APEX organization

Conclusions

Project organization

WP1 – SILICO

- Computational dosimetry at cell and organ level
- Survival models and DNA damage study
- Monte Carlo simulations for imaging prototypes

WP1 methodology

Monte Carlo simulations compute the

and the consequent DNA damage.

absorbed dose per activity unit (*S-value*)

Silico for vitro

Cell shape and dimensions are retrieved from microscopy via image-processing software.

Silico for vivo

vivo or taken from **PET/SPECT** imaging.

Simulations can provide organ S-values for treatment plans as well as imaging previews to tune the devices.

Biophysical models help understanding the **dose-rate curve** and the **DNA repair dynamics** from data.

WP2 – VITRO

WP2 methodology

Biological effects: DNA damage and cell survival

3D tissue-mimicking scaffolds are optimized for the cell lines under

Cell death and vitality are evaluated by means of **clonogenic survival assays**.

2D/3D **foci assays** visualize the real-time DNA damage imparted by the ¹¹¹Ag-PSMA-617 treatment.

In APEX, high-resolution β imagers allow to discriminate intracellular absorption and can be used on 3D scaffolds.

Uptake measurements

The **uptake** of radiopharmaceutical in Petri is generally evaluated with **y** counters analyzing pellets of cells. This is useful for dosimetry.

ſ

WP3 – VIVO

- Biodistribution *ex vivo* of ¹¹¹Ag-PSMA-617
- Preclinical experiments *in vivo* with ¹¹¹Ag-PSMA-617 and
 ¹⁷⁷Lu-PSMA-617 for comparison
- $\$ γ imaging and radiomics

WP3 methodology

Preclinical experiments: biodistribution and animal trials

The **ex-vivo biodistribution** is preliminarily evaluated with free ¹¹¹Ag, chelated ¹¹¹Ag and ¹¹¹Ag-PSMA-617 in healthy mice and in mice **transfected with tumors** expressing or not expressing the target receptor.

The real-time biodistribution can be visualized via 2D **autoradiography** and 3D **PET/CT** or **SPECT/CT** imaging; a ¹¹¹Ag-tailored **\gamma** camera is also available from ADMIRAL.

If the targeting is good, the **therapeutic effect** is finally assessed evaluating the **recovery** of treated mice.

Gantt diagram

PADOVA INVOLVED IN WP1 AND WP2			Year 1			Year 2				Year 3			Notes			
		M	3 M	6 M	9 M1	2 M15	M18	M21	M24	M27	M30	M33	M36	Required for	Publications	Divisions
	WP1 – SILICO (leader: S. Bortolussi)															
T1.1	Image-based Monte Carlo dosimetry for prostate cancer cells		•											T2.1-T2.6	A, B	LNL, PD, PV
T1.2	Internal Monte Carlo dosimetry of biodistribution study with healthy mice		•											T3.5	с	LNL, PD, PV
T1.3	Internal Monte Carlo dosimetry of biodistribution study with tumor-bearing mice					\rightarrow			٠					T1.5, T3.6	D	LNL, PD, PV
T1.4	Biophysical model validation with radiobiological data			-	•										Α	LNL, PD
T1.5	Dosimetric planning for preclinical studies with tumor-bearing mice							\rightarrow			•			T3.6	E	LNL, PD, PV
T1.6	Validation of DNA damage models using radiobiological data and Geant4-DNA							\rightarrow					•		F	LNL, PD
T1.7	Preliminary dosimetric predictions for human patients										t		•		E	LNL, PD, PV
	WPZ – VITRO (leader: D. Maniglio)															
T2.1	2D radiobiology of Ag-111-PSMA-617 on prostate cancer cells	-	•											T1.4	A	PV
72.2	2D redichielegy of to 177 DEMA. C17 on prostate concercells		•											T1.4	Α	LNS
T2.3	β imaging of 2D cell culture uptake	E	•											T2.1	Α	PD, PI
		R.													В	PV, TIFPA
T2.5	Microscopy and β imaging of 3D cell culture uptake													T2.4, T2.6	В	TIFPA, PD, PI
12.0	SD radiobiology of Ag-1114 SiviA-017 on prostate cancer cells in bioreactor														B	PV, TIFPA
T2.7	2D radiobiology of SPES radionuclides													T1.6	F	LNL
	WP3 – VIVO (leader: F. P. Cammarata)															
T3.1	Authorization request to work with Ag-111 in mice at CAPiR and CISUP	-	• •											T3.4-T3.6		PI, LNS
T3.2	γ camera and SPECT imaging of Ag-111 in phantoms				ublicat	ontren	ort schu	dule						T3.7	G	BO, PI
T3.3	ARG imaging improvement using the γ camera collimator		Index	Year	o o neco co	ontrep	Then	ne						T3.4-T3.6	G	BO, LNS
T3.4	γ imaging and ex vivo biodistribution study of Ag-111-PSMA-617 in healthy mice		A 2027 2D radiobiology of Ag-111-PSMA-617		617				T1.2	с	LNS, PI, LNL					
T3.5	γ imaging and ex vivo biodistribution study of Ag-111-PSMA-617 in tumor-bearing mice		B 2029 3D radiobiology of Ag-111-PSMA-617		617				T1.3	D	LNS, PI, LNL					
T3.6	Preclinical experiments and Y imaging using Ag-111-PSMA-617 on tumor-bearing mice		C 2027 Biodistribution in healthy mice					•	T1.7, T3.7	E	LNS, PI, BO					
T3.7	Radiomic features evaluation from SPECT/CT of preclinical studies		D 2028 Biodistribution in tumor-bearing mic			nice			•		н	LNS				
\rightarrow	Activity started				Preci	inical tri	als of A	g-111-	PSMA-	617						
•	Deliverable/milestone reached	L	F	2029	Val	dation o	f DNA	damage	e mode	ls						
		Ľ	G	2029	Scin	tigraphy	with A	g-111	y came	ra						
			н	2029			Radion	nics								

Endorsement of hospitals

[Loading...]

Santa Maria Nuova (Reggio Emilia) Cannizzaro (Catania)

IRST D. Amadori (Meldola, FC)

Spedali Civili (Brescia)

Project FTE

LNL								
Name	WP	FTE	Status					
Alberto Andrighetto (National resp.)	2	0.5	Experimental physicist, technology executive					
Stefano Corradetti (LNL local resp.)	2	0.1	Materials engineer, technologist					
Valerio Di Marco	2, 3	1	Chemist, associate professor at UNIPD					
Laura Orian	2, 3	1	Chemist, associate professor at UNIPD					
Omorjit Singh Khwairakpam	2	0.1	Experimental physicist, post-doc					
Total LNL FTE		2.7	T=0.6; R=2.1					

Padova									
Name	WP	FTE	Status						
Alberto Arzenton (National resp.)	1, 2	0.6	Theoretical physicist, research scholar at UNIPD						
Marcello Lunardon (PD local resp.)	2, 3	0.5	Experimental physicist, associate professor at UNIPD						
Sandra Moretto	2, 3	0.1	Experimental physicist, associate professor at UNIPD						
Lisa Zangrando	1	0.1	Computer scientist, technologist						
Total PD FTE		1.3	T=0.1; R=1.2						

Bologna									
Name	WP	FTE	Status						
Matteo Negrini (BO local resp.)	3	0.2	Experimental physicist, researcher						
Anselmo Margotti	3	0.2	Experimental physicist, technology executive						
Carla Sbarra	3	0.2	Experimental physicist, researcher						
Giuseppe Baldazzi	3	0.3	Experimental physicist, associate professor at UNIBO						
Edoardo Borciani	3	0.5	Physics PhD student at UNIBO						
Total BO FTE	-	1.4	T=0.2; R=1.2						

LNS								
Name	WP	FTE	Status					
Giorgio Russo (LNS local resp.)	3	0.3	Experimental physicist, CNR researcher					
Francesco Paolo Cammarata	3	0.5	Biologist, CNR researcher					
Cristiana Alberghina	3	1	Biologist, post-doc at UNICT					
Alessandro Stefano	3	0.3	Computer engineer, CNR researcher					
Total LNS FTE		2.1	T=0; R=2.1					

Pavia										
Name	WP	FTE	Status							
Antonietta Donzella (PV local resp.)	1, 3	0.6	Computational physicist, technologist at UNIBS							
Giorgio Biasiotto	2	0.2	Biochemist, associate professor at UNIBS							
Roberto Bresciani	2	0.2	Biochemist, associate professor at UNIBS							
Carlo Rodella	1, 2	0.4	Medical physicist at Spedali Civili di Brescia							
Federica Saiani	1, 2	0.4	Medical physicist at Spedali Civili di Brescia							
Andrea Salvini	2, 3	0.3	Radiochemist, technologist at UNIPV-LENA							
Andrea Gandini	2, 3	0.3	Radiochemist, technologist at UNIPV-LENA							
Fabio Zelaschi	2, 3	0.2	Radiochemist, technologist at UNIPV-LENA							
Silva Bortolussi	1, 2	0.2	Experimental physicist, associate professor at UNIPV							
Marco Di Luzio	2	0.5	Metrologist, INRiM researcher							
Giancarlo D'Agostino	2	0.5	Metrologist, INRiM researcher							
Laura Cansolino	2	0.3	Biologist, technologist at UNIPV							
Cinzia Ferrari	2	0.4	Biologist, technologist at UNIPV							
Total PV FTE		4.5	T=2.1; R=2.4							

Pisa									
Name	WP	FTE	Status						
Nicola Belcari (PI local resp.)	2, 3	0.4	Experimental physicist, associate professor at UNIPI						
Emilio Mariotti	3	0.1	Experimental physicist, associate professor at UNISI						
Giancarlo Sportelli	2, 3	0.3	Experimental physicist, associate professor at UNIPI						
Luca Menichetti	3	0.2	Radiochemist, CNR researcher						
Daniele Panetta	3	0.2	Medical physicist, CNR researcher						
Total PI FTE		1.2	T=0; R=1.2						

TIFPA									
Name	WP	FTE	Status						
Devid Maniglio (TIFPA local resp.)	2	0.5	Experimental physicist, associate professor at UNITN						
Alessio Bucciarelli	2	0.7	Material scientist, researcher at UNITN						
Annalisa Tirella	2	0.7	Biomedical engineer, associate professor at UNITN						
Antonella Motta	2	1	Biomedical engineer, full professor at UNITN						
Total TIFPA FTE		2.9	T=0; R=2.9						

16.1

Total project FTE

1st year budget

		LNL
Туре	ID	Item
Equipment	0	Equipment for radiobiology lab
	1	Mouse phantoms
Consumables	2	Radiobiology laboratory material
	3	Laboratory material for molecule synthesis
Travels	4	Travels for experimental activity
		Total LNL

			Pado
Туре	ID	Item	
Consumables	5	New components for β detector	
Shipping	6	Shipping of detectors, etc.	
Travels	7	Travels for research activities	
		Total PD	

		Bolog				
Туре	ID	Item				
	8	Scintillator				
Consumption	9	Tungsten foil for collimator (or other mater				
Consumables	10	Electronic components				
	11	Mechanic components				
Travels	12	Travels for experimental activity				
Total BO						

			LNS			
Туре	ID	Item				
Consumphies	13	Laboratory material				
consumables	14	Mice for in-vivo experiments				
Shipping	15	Shipping of detector, drugs, samples				
Travels	16	Travels for experimental activity				
Total LNS						

		Pavia
Туре	ID	ltem
Consumables	23	Chambers and electronics for "hot" bioreactor
	24	Radiobiology laboratory material
	25	Enriched Pd-110 targets
	26	Laboratory material for LENA
	27	Material for activation measurements (INRiM)
Services	28	Target irradiation and chemical separation at I
Shipping	29	Shipping of Ag-111, etc.
Travels	30	Travels for research activities
		Total PV

			Pisa
Туре	ID	Item	
Consumables	17	Laboratory material	
	18	New components for β detector	
	19	Mice for in-vivo experiments	
Services	20	Access to the Eurobioimaging facility	
Shipping	21	Shipping of Ag-111, etc.	
Travels	22	Travels for experimental activity	
		Total PI	

TIFP					
Туре	ID	Item			
Consumables	31	Chambers and electronics for "cold" bioreac			
	32	Biology laboratory material			
Shipping	33	Shipping of cell lines, etc.			
Travels	34	Travels for experimental activity			
		Total TIFPA			

Total project

Padova prospect

Padova					
Name	WP	FTE	Status		
Alberto Arzenton (National resp.)	1, 2	0.6	Theoretical physicist, research scholar at UNIPD		
Marcello Lunardon (PD local resp.)	2, 3	0.5	Experimental physicist, associate professor at UNIF		
Sandra Moretto	2, 3	0.1	Experimental physicist, associate professor at UNIPD		
Lisa Zangrando	1	0.1	Computer scientist, technologist		
Total PD FTE			T=0.1; R=1.2		

Padova									
Туре	ID	Item	WP	Year 1 [k€]	Year 2 [k€]	Year 3 [k€]	Total		
Consumables	5	New components for β detector	2	1	1	1	3		
Shipping	6	Shipping of detectors, etc.	3	1	1	1	3		
Travels	7	Travels for research activities	1, 2, 3	3	3	3	9		
Total PD					5	5	15		

ISOLPHARM method and collaboration

- ISOLPHARM experiments: past and present
- ISOLPHARM_APEX organization
- Conclusions

WP1 – SILICO

Monte Carlo dosimetry in murine and cellular geometries; development of models for DNA damage repair and cell survival. Divisions involved: PD, LNL, PV.

WP2 – VITRO

2D and 3D radiobiology using ¹¹¹Ag-PSMA-617, other nuclides for comparison and radiotracers, including also cold studies for the 3D part. β imaging for cell uptake measurements. Divisions involved: PV, TIFPA, LNS, LNL, PD, PI.

WP3 – VIVO

In vivo experiments with ¹¹¹Ag-PSMA-617, radiomics and imaging using γ camera prototype, SPECT/CT and ARG. Imaging calibration using phantoms.

Divisions involved: LNS, PI, BO.

Possible international partners: **BIOEMTECH** (SPECT imaging), **CNEA** (currently studying ¹⁷⁷Lu-DTPA complexes)

With successful preclinical trials using ¹¹¹Ag-PSMA-617 against prostatic tumors, <u>clinical trials</u> could begin

- Possible <u>commercialization</u> γ and β imaging prototypes, if their goals in terms of resolution and efficiency will be satisfied
- Production of low-dose-rate <u>radiobiological data</u> as benchmark for DNA damage and repair models with SPES_MED nuclides

Thank you!

Backup slides

ISOLPHARM EIRA achievements

Task 1 - Physics

- Production of ¹¹¹Ag via radiative neutron capture using ¹¹⁰Pd or ^{nat}Pd targets 888 -
- Spectroscopic system for radiation measurements at the reactor and ex vivo
- Study of laser photo-ionization schemes of Ag for SPES laser ion source 88 k

Task 2 - Chemistry

- Ag/Pd separation protocol after irradiation at LENA 888
- Development of stable chelators for Ag **

Task 3 - Biology

- Synthesis of linkers and targeting agents for CCK2R
- "Cold" affinity tests in vitro
- Biodistribution and stability tests in vivo using PET/SPECT radionuclides

The SPES_MED experiment (2025-2027)

First nuclear measurements at SPES financed by INFN-CSN3!

Work packages

- 1) Cross-section measurements (LARAMED project)
- 2) ISOL production yield measurements (ISOLPHARM project)
- 3) Theory and simulations

The SPES_MED scenario

WP2 aim: measuring the **ISOL production yields of radiotracers** with applications in biology, medicine, environment, industry.

2025: ²⁴Na and ⁷Be from SiC target (currently out of SPES_MED)
2026: ²⁸Mg from SiC target (low activity expected)
2027: ⁵¹Cr (low activity expected), ⁴³K from TiC target + ¹¹¹Ag from UC_x

High-production nuclides could be used in a CSN5 experiment!

Radiobiology lab at LNL?

SPES_MED vs ISOLPHARM_APEX

 $\overline{}$

.....

SPES_MED: nuclear measurements (approved by CSN3)

After measurements, either:

- dispose of the radionuclide
- reuse it for applications

ISOLPHARM_APEX: application to radiobiology and medicine (to be submitted to CSN5)

1st year summary

IN-SILICO DOSIMETRY IN CELLULAR AND MURINE GEOMETRIES WP1 will begin the computational activities in geometries reproducing the microscopic cellular environment and the macroscopic living systems formed by the small animals for preclinical tests. Different prostate cancer cell lines will be analyzed via microscopy in terms of shape and volume. In this way, it will be possible to calculate the dosimetry of a treatment and associate the absorbed dose per cell to the administered activity, which is experimentally measured. Moreover, as soon as the first biodistribution data will be obtained after injection of ¹¹¹Ag or ¹¹¹Ag-labelled molecules in mice, the internal dosimetry of the small animals' organs will be calculated by Monte Carlo simulations. This is a fundamental step to plan the activity concentrations to be administered in the subsequent in-vivo experiments.

2D RADIOBIOLOGY EXPERIMENTS AND UPTAKE MEASUREMENTS Regarding WP2, the activities of 2026 will deal with radiobiology studies in traditional 2D Petri dishes. The purpose is to study the cell survival (clonogenic assay) and the repair dynamics of radiation-induced DNA damage (*foci* assay) in cultures treated with ¹¹¹Ag-PSMA-617 and, for comparison, with ¹⁷⁷Lu-PSMA-617. The targeting efficiency of the novel ¹¹¹Ag-labelled compound will be evaluated by repeating the experiments using several prostate cancer cell lines with different expressions levels of the PSMA target receptor. Such experiments will be performed by the Pavia and LNS personnel, taking advantage of the infrastructures of the Universities of Pavia and Catania and of the Cannizzaro hospital. In addition, the uptake of radiopharmaceutical will be measured by the β imagers developed within the ISOLPHARM collaboration by the Pisa and Padova groups and by y counters.

FIRST PRECLINICAL EXPERIMENTS WITH ¹¹¹**Ag-PSMA-617** WP3 in-vivo experiments will start as soon as the devoted laboratories, CAPiR in Catania and CISUP in Pisa. The main aim will be the measurement ex vivo of the biodistribution of i) free ¹¹¹Ag, ii) chelated ¹¹¹Ag (¹¹¹Ag-DO4S) and iii) ¹¹¹Ag-PSMA-617 in mice without tumor. This will be useful to assess the stability of the molecules and the targeting efficiency in vivo, when the same tests will be repeated in mice with transfected tumors during the 2nd year of the project. The experiments aforementioned will be supported by γ imaging techniques, including SPECT in Pisa, autoradiography in Catania and the γ camera prototype developed by the Bologna group. Such devices will be first calibrated with murine phantoms, to quantify the resolution achievable and the exposure time required. An additional activity will regard the possible improvement of the autoradiography resolution using the ¹¹¹Ag-specific collimator of the γ camera prototype.

2nd year summary

THERAPY PLANNING FOR PRECLINICAL STUDIES AND BIOPHYSICAL MODELS FOR RADIOBIOLOGY Taking advantage of the first ¹¹¹Ag-PSMA-617 biodistributions measured in mice with prostatic tumors, WP1 will optimize and complete the internal dosimetry activities on murine geometries. This essential work will provide an exhaustive picture of the dose imparted by the novel drug to the various organs (as well as the tumor) during a treatment. The 3rd year preclinical studies will be planned according to the dose maps obtained. On the other side, the WP1 personnel will use the experimental data acquired by WP2 to tune the biophysical models developed. The goal is to provide a robust method for the analysis of clonogenic-assay outcomes obtained using radiopharmaceuticals, also making them comparable to the benchmark of external-beam radiotherapy.

UPGRADE TO 3D RADIOBIOLOGY EXPERIMENTS IN TISSUE-MIMICKING SCAFFOLDS In 2027, WP2 will substantially repeat the 2D tests of 2026 in 3D tissue-mimicking scaffolds (developed by the TIFPA group). Uptake measurements will strongly rely on β imagers, since a γ -counter analysis of the samples may not be possible due to physical features of the scaffolds. Also, a microscopic analysis of the stable equivalent of the drug could be helpful in this context.

¹¹¹Ag-PSMA-617 BIODISTRIBUTION EXPERIMENTS IN TUMOR-BEARING MICE WP3 will complete the activities begun during 2027. The characterization and optimization of the γ imaging devices will be concluded by the end of the year. ¹¹¹Ag-PSMA-617 biodistribution tests will also continue with the experiments on tumor-bearing mice. The information resulting from these will be a fundamental input for WP1 internal dosimetry simulations which will lead to the definition of the treatment plans to be adopted in the preclinical experiments of the last year of the project.

INTERNAL DOSIMETRY ON MICE AND HUMANS AND DNA REPAIR MODELLING In the last year of the project, WP1 will have a fundamental role in the planning of preclinical experiments (WP3), as also in the second half of 2027. Moreover, in the last part of the year, the dosimetric parameters obtained for mice will be converted using appropriate methods to the human case, in order to have an idea of the possible amounts of activity required by patients in hospitals. On the cellular side, the theoretical modelling of the DNA repair pathways will be studied and compared to the data from *foci* assays.

3D RADIOBIOLOGY IN BIOREACTORS AND FIRST STUDIES ON SPES RADIONUCLIDES 2028 will take WP2 to the final stage of in-vitro experimentation: the use of 3D scaffolds in bioreactors to reproduce more faithfully the in-vivo conditions in cancer spheroids. Before the experiments, which will take place in Pavia, a campaign of cold tests will be performed in the facilities of the University of Trento associated to TIFPA. Together with such an enticing challenge, a goal of ISOLPHARM_APEX is to re-open the radiobiology laboratory of the LNL to study the effects on cells of radiotracers produced at the SPES ISOL facility using light targets.

PRECLINICAL EXPERIMENTS AND FINAL EVALUATION OF ¹¹¹Ag-PSMA-617

have the task of testing the therapeutic effect of the novel radiopharmaceutical candidate ¹¹¹Ag-PSMA-617 in mice. The outcomes of these experiments, also compared to ¹⁷⁷Lu-PSMA-617 results, will determine the goodness of the new drug as, in case of success, it would be considered ready for the clinical phase. Finally, the set of SPECT/CT images collected during the three years of the project will enable the opportunity to perform radiomics studies, taking advantage of the machine-learning expertise of the LNS personnel.

In the final months of ISOLPHARM APEX, WP3 will

