

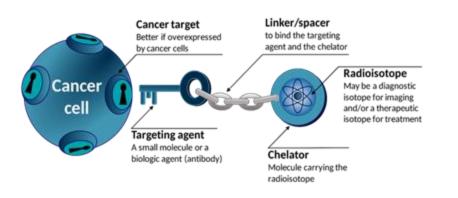
Advanced Dosimetry Methods and In-vitro Radiobiology of Ag-111 Labeled radiopharmaceuticals

- Principal Investigator Alberto Andrighetto, INFN-LNL.
- INFN Research Units

LNL, Padova, TIFPA, LNS, Pavia, Bologna.

- Research Fields
 Medical Physics, Radiation Detectors, Radiobiology.
- Duration 3 years.

Interdisciplinary WPs: WP1 & WP4


WP1

WP Leader: V. Di Marco (UNIPD) and D. Meniglio (UNITN)

WP Leader: S. Bortolussi (UNIPV)

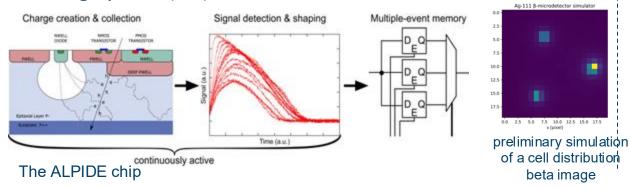
Work Package Aim

WP1 will sum up all the preexisting activities leading to the **development of the radiopharmaceutical itself**, with the addition of the **tissue-mimicking scaffold production** to generate **more realistic 3D cell cultures** to be employed in the other work packages.

Work Package Aim

The whole set of experimental activities concerning **radiobiology**. In particular cell survival in 2D and 3D scaffolds will be evaluated. The acquired **radiobiological data** will be related to the absorbed **dose at cell** level, which will be calculated using Monte Carlo method, exploiting the available data about ¹¹¹Ag uptake *in vitro* and transporting the emitted radiation in simulated geometries that reproduce the monolayer or the **3D scaffold**.

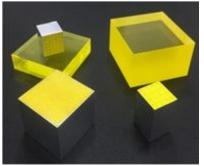
Detector development WPs: WP2 & WP3


WP2

WP Leader: M. Lunardon (UNIPD)

Work Package Aim

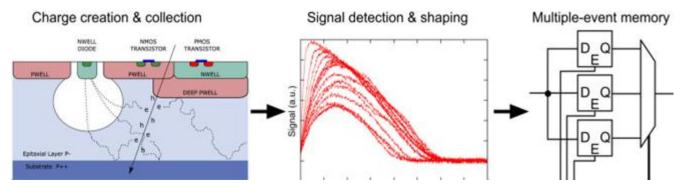
This WP will be devoted to the **design**, **construction** and **characterization** of a new large-area detector for 2D β imaging at high resolution. This new device will take advantage of the monolithic silicon pixel technology developed recently for the ALICE experiment, namely the **ALPIDE**, the Monolithic Active Pixel Sensor of the new Inner Tracking System (ITS).

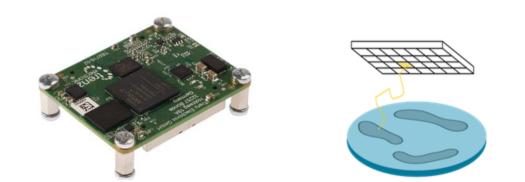

WP Leader: C. Sbarra (UNIBO)

Work Package Aim

This WP is aimed at the **design and development** of a planar scintigraphic system optimized for the incoming **y emission** from the de-excitation of ¹¹¹Cd after the radioactive decay of ¹¹¹Ag. The design and construction of the imaging device will begin considering **all its components**, from **detectors** to **data acquisition software**.

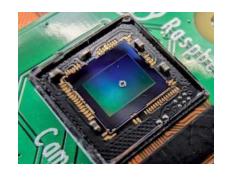
GAGG scintillators in slab and matrix produced by EPIC-Crystals

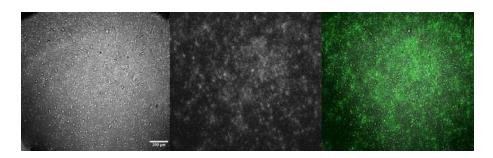




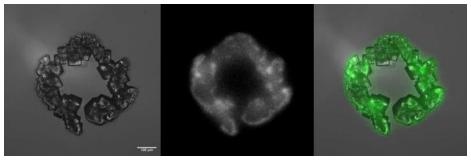
Proposal:

- ALPIDE chips: technology from HEP
- 15 mm x 30 mm active area with 512 x 1024 pixels (typical size about 25 um)
- low-cost readout electronics using commercial FPGA + custom PCB + dedicated Firmware
- modular system, scalable size, compact, easy to use. With 8 chips an active plate of 60 mm x 60 mm can be easily assembled.



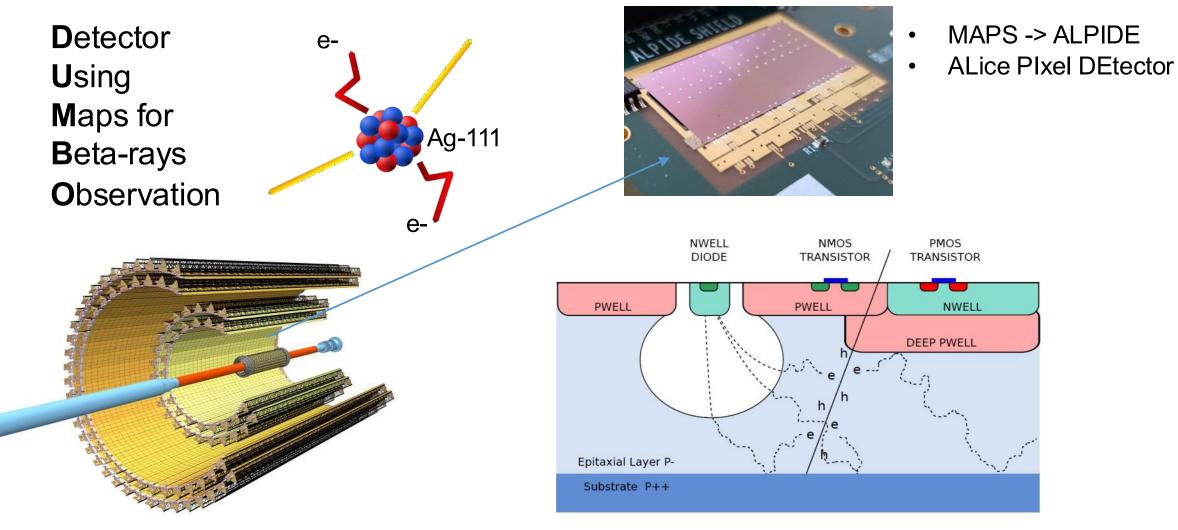


More low-cost beta-imaging detectors on the market



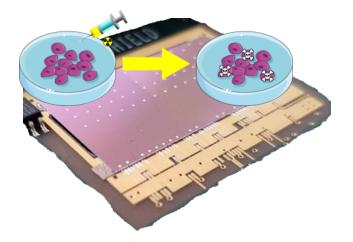
Beta detector of INFN-Pisa

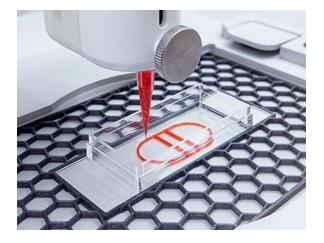
- Test with cells taking up 18F-FDG
- Test planned at CAPiR in June
 with cells uptaking Ag-111
 Center for Advanced Preclinical in vivo Re



- Test with 18F-FDG
- small active area (3mm x 3 mm)
- micrometric spatial resolution with radioactive source in contact => systematic contamination of the chip and surrounding

Realization: DUMBO

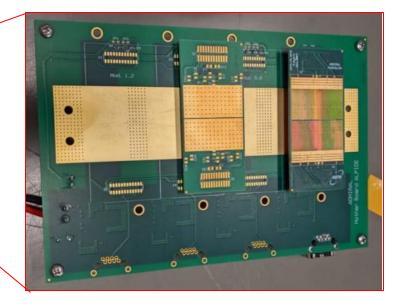




Why DUMBO

Features of DUMBO

- Sample isolated from the detector => no contamination
- o Spatial resolution of about 1 mm at 500 um distance
- Large sensitive area ($15x30 \text{ mm}^2$ / chip => 120 mm x 30 mm)
- \circ $\,$ Scanner function using motors to increase FoV $\,$
- \circ Easy to use
- Applications
 - o Cell clusters imaging in-vitro for uptake
 - Imaging of 2.5D scaffolds



Realization: DUMBO

- 8 ALPIDE chips are the sensitive elements
- Mechanics system to place the sample
 - o x-y movement

WP2 active people

Staff:

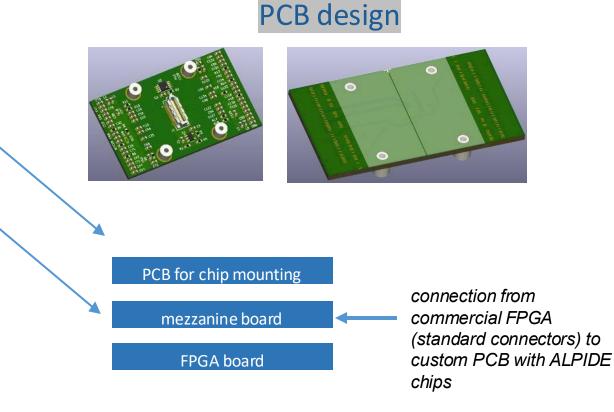
- Marcello Lunardon -> WP leader
- Piero Giubilato -> Resources
- Sandra Moretto -> Resources
- Devis Pantano -> ALPIDE electronics
- Lorenzo Castellani -> ALPIDE electronics
- Roberto Michinelli (BO) -> mechanics designer

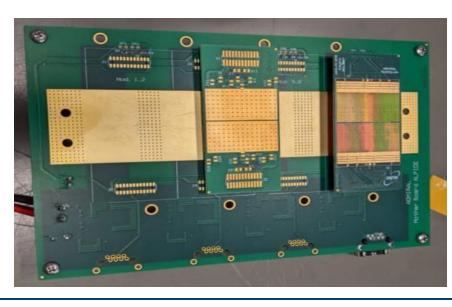
PhD students:

- Aurora Leso -> Geant4 simulation
- Davide Serafini -> experimental setup

Bachelor students:

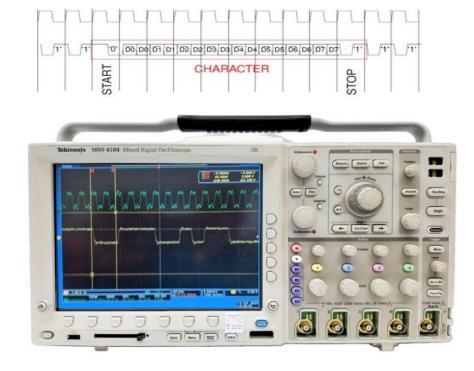
- Sofia Busatto -> Geant4 simulation
- Tommaso Coppelli -> movement tests and phantoms
- Edoardo Cervi Gambaro -> ALPIDE tests





Design and realization of the PCB for the chips

- Chip mounting PCB hosting two ALPIDE chips (basic module): design complete and boards printed
- Mezzanine and FPGA board designed and printed.



Thanks to support of PD Electronic Shop (Lorenzo Castellani)

ALPIDE communication and DAQ software

• Communication with the ALPIDE

• Bachelor thesis of Edoardo Cervi Gambaro

ALPIDE Operations Manual

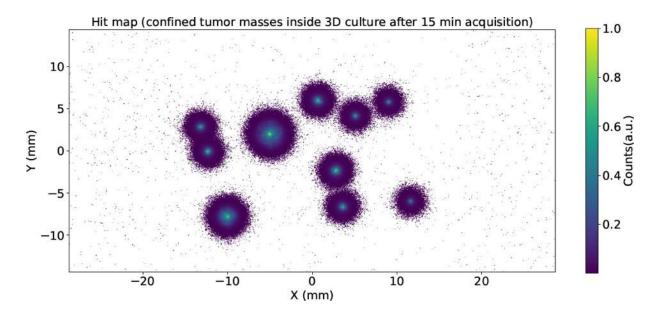
ALICE ITS ALPIDE development team

July 25, 2016 Version: 0.3 Status: DRAFT

Step-motor control software

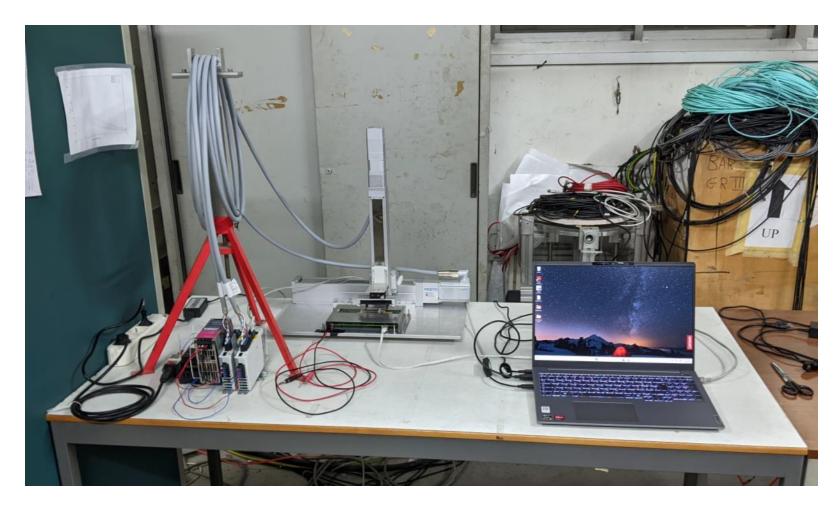
- Two motors for two axes
- One micrometric manual traslator on the 3rd axis
- Festo automation suite can be be used for manual and automatic control
- Festo-edcon python library for modbus communication with the motors
- Python scripts with several target positions
 - Integration with ALPIDE communication python script
- Bachelor thesis of Tommaso Coppelli

" 🥐 python"



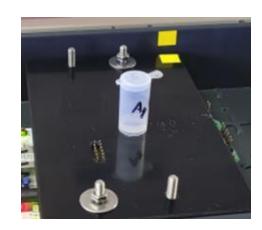
Simulations

- Simulation framework developed by previous students
- Different experimental conditions can be simulated
- Thesis of Sofia Busatto

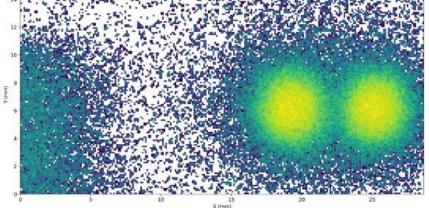


Development setup

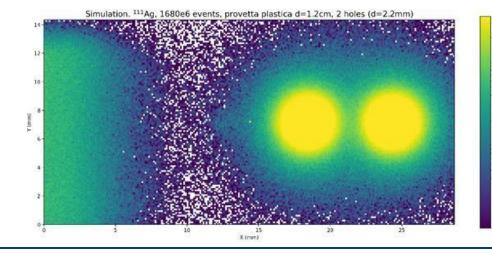
One python script:


- Motors movement
- Chip communication

Last experiment in 2024

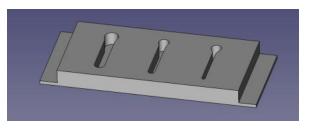





Beta detector tests at LENA:

- Characterized the ALPIDE sensor
 - No mechanics
- Validated the Geant4 simulations
- Ag-111 solution in big vials (diameter 12.5 mm)
 - With collimator

Due fori di d=2.2 mm



Next experiment in July 2025

Designed by Tommaso Coppelli

DUMBO tests at LENA:

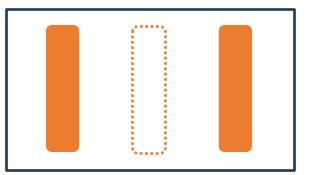
- Characterize the whole device
 - ALPIDE chip (still temporary)
 - Movement system

Preliminary tests

- Study of diffusion of Ag-111 ions
 - In GeIMA scaffolds prepared ad the radiolab of Pavia in collaboration with

the BIOtech of Trento

- Evaluation of the spatial resolution
 - In plastic phantoms


Last ADMIRAL experiments

Experiments with cell cultures:

- Estimate uptake of different cell lines in the same culture
 - \circ Uptake of Ag-111 ions
 - Uptake of Ag-111 radiopharmaceutical

ADMIRAL – GANTT

ADMIRAL WP2		Year 1			Year 2				Yea		r3		Notes				
		M3	M6	M9	M12	M15	M18	M21	M24	M27	M30	M33	M36	Required for			
	WP2 - β-Imaging																
MS2.0	Development of the detector control firmware prototype	\rightarrow			•									MS2.3			
MS2.1	Electronics and mechanics design	\rightarrow			0		0		•					MS2.3			
MS2.2	Preliminary Monte Carlo simulations for mechanics and detector design	\rightarrow		0					•					MS2.3			
MS2.3	Detector characterization and test with fluorescence							\rightarrow	0				•	MS4.4			

Activity planned for second semester 2025:

- complete the assembly of the electronic board with O(4) chips
- finalize the communication and DAQ software
- finalize the step-motor control software and image-reconstruction software
- more experimental test with cell cultures in slides and scaffods and fluorescence imaging comparison

Thank you for your attention!

BACKUP

NFN-PD -	- budget for 3 nd year	Requested	Granted [k€]		
		[k€]			
Consumables	Mechanics	1	-		
Consumables	Electronics	4	-		
Shipping	Shipping of detectors from PD to test sites in Italy	2	-		
Travels	Travels for experimental activity	4	-		
	TOTAL INFN-PD	16	-		

Anagrafica 2024: M. Lunardon 0.6, S. Moretto 0.1, P.Lotti 0.3, L. Zangrando 0.2, Chiara Bonini (PhD) 0.5, Daiyuan Chen (PhD) 1.0, Jessica Delgado Alvarez (Assegno) 1.0 TOT = 3.7 FTE

Anagrafica 2025: M. Lunardon 0.5 (0.2 in SPES_MED), S. Moretto 0.1 (0.5 in SPES_MED), Jessica Delgado Alvarez (Assegno) 1.0 + possibile percentuale parziale di dottorando elettronica nel corso del 2025 TOT = 1.6 FTE

Collaborano inoltre: Piero Giubilato, Michele Giorato

Richieste servizi: 2/3 M.U. officina elettronica per realizzazione scheda, chip bonding e altre operazioni (TBD next con Marino)