Study of the e⁺e⁻ $\rightarrow \pi^+\pi^-\psi(2S)$ reaction at $\sqrt{s} > 4.6$ GeV and search for the charged $Z_c(4430)$ exotic state

DocDB: https://docbes3.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=1520

mscodegg@fe.infn.it

BESIII Analyses @Ferrara 27th June 2025

Marco Scodeggio

Preamble

What and Why

The $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction offers the possibility to probe the **XYZ sector**, via the investigation of 2 exotic states

The **Y(4660)** via the e⁺e⁻ $\rightarrow [\pi^{+}\pi^{-}/f_{0}(980)]\psi(2S)$

Y(4660), observed by BaBar^[1], BELLE^[2], and BESIII^[3] hypothesised to be a **baryonium**^[4], a **molecule**^[5], or a **tetraquark**^[6]

Study of the exotic $Z_c(4430)$ state through the $e^+e^- \rightarrow \pi^+Z_c(4430) \rightarrow \pi^+\pi^-\psi(2S)$

Z⁺_c(4430) was **observed** and studied in the *B*-decays in the $\pi \psi(2S)$ invariant mass by BELLE^[7] (and by LHCb^[8])

Motivation

In Refs. [9, 10], the $Z_c(3900)^{\pm}$ state is seen both in $\pi\psi(2S)$ and $\pi J/\psi$, and in relation with the Y(4260) resonance

Ref. [10] finds R = $\sigma(\pi^{\pm}Z_{c}(3900)^{+} \rightarrow \pi^{+}\pi^{-}J/\psi)/\sigma(\pi^{+}\pi^{-}J/\psi) \sim 22\%$, neglecting the the J/ ψ to ψ (2S) PHSP change, ~100 events are expected around Y (4660)

^[1] Phys. Rev. D **89**, 111103 ^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001

Preamble

What and Why

The $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction offers the possibility to probe the **XYZ sector**, via the investigation of 2 exotic states

The **Y(4660)** via the e⁺e⁻ $\rightarrow [\pi^{+}\pi^{-}/f_{0}(980)]\psi(2S)$

Y(4660), observed by BaBar^[1], BELLE^[2], and BESIII^[3] hypothesised to be a **baryonium**^[4], a **molecule**^[5], or a **tetraquark**^[6]

Study of the exotic $Z_c(4430)$ state through the $e^+e^- \rightarrow \pi^+Z_c(4430) \rightarrow \pi^+\pi^-\psi(2S)$

Z⁺_c(4430) was **observed** and studied in the *B*-decays in the $\pi \psi(2S)$ invariant mass by BELLE^[7] (and by LHCb^[8])

How

The study will make use of the 12 datasets @√s > 4.6 GeV

No Z_c(4430) **signal** was observed in the **mono-energetic datasets**^[11], so the main idea is to merge all the data $@\sqrt{s} > 4.6 \text{ GeV}$ to use the whole statistics

^[1] Phys. Rev. D **89**, 111103 ^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001 ^[11] Phys. Rev. D **104**, 052012

Preamble

Datasets

Dataset	E_{CoM} (MeV)	$\mathcal{L}~(\mathrm{pb}^{-1})$	Boss Version
4610	$4611.86{\pm}0.12{\pm}0.30$	$103.65{\pm}0.05{\pm}0.55$	
4620	$4628.00{\pm}0.06{\pm}0.32$	$521.53 {\pm} 0.11 {\pm} 2.76$	
4640	$4640.91{\pm}0.06{\pm}0.38$	$551.65{\pm}0.12{\pm}2.92$	7.0.6
4660	$4661.24{\pm}0.06{\pm}0.29$	$529.43 {\pm} 0.12 {\pm} 2.81$	
4680	$4681.92{\pm}0.08{\pm}0.29$	$1667.39{\pm}0.21{\pm}8.84$	
4700	$4698.82{\pm}0.10{\pm}0.36$	$535.54{\pm}0.12{\pm}2.84$	
4740	$4739.70 {\pm} 0.20 {\pm} 0.30$	$163.87 {\pm} 0.07 {\pm} 0.87$	
4750	$4750.05{\pm}0.12{\pm}0.29$	$366.55{\pm}0.10{\pm}1.94$	
4780	$4780.54{\pm}0.12{\pm}0.30$	$511.47 {\pm} 0.12 {\pm} 2.71$	7.0.7
4840	$4843.07{\pm}0.20{\pm}0.31$	$525.16{\pm}0.12{\pm}2.78$	
4914	$4918.02{\pm}0.34{\pm}0.34$	$207.82{\pm}0.08{\pm}1.10$	
4946	$4950.93{\pm}0.36{\pm}0.38$	$159.28{\pm}0.07{\pm}0.84$	

How

The study will make use of the 12 datasets @√s > 4.6 GeV

No Z_c(4430) **signal** was observed in the **mono-energetic datasets**^[11], so the main idea is to merge all the data $@\sqrt{s} > 4.6 \text{ GeV}$ to use the whole statistics

^[1] Phys. Rev. D **89**, 111103 ^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001 ^[11] Phys. Rev. D **104**, 052012

Preamble DEC Cards

$e^+e^- \rightarrow \pi^{\pm}Z_c(4430)$

noPhotos Particle vpho 4.6819 0

Decay vpho 0.5000 dummy10_1 pi- PHSP; 0.5000 anti-dummy10_1 pi+ PHSP; Enddecay

Decay dummy10_1
 1.0000 pi+ psi(2S) PHSP;
Enddecay

Decay anti-dummy10_1
 1.0000 pi- psi(2S) PHSP;
Enddecay

Decay psi(2S)
 1.0000 pi+ pi- J/psi PHSP;
Enddecay

Decay J/psi 0.5000 e+ e- PHSP; 0.5000 mu+ mu- PHSP; Enddecay

End

 $Z_{c}(4430)$ $M_{Zc} = 4478^{+15}_{-18}$ MeV $\sigma_{Zc} = 181 \pm 31$ MeV

Signal MC samples 300k events

 $e^+e^- \rightarrow \pi^+\pi\psi(2S)$

Particle vpho 4.6819 0.0 Decay vpho 1.0000 ConExc -2 100443 211 -211 Enddecay

Decay vhdr 1.0000 psi(2S) pi+ pi- VVPIPI; Enddecay

Decay psi(2S) 1.000 J/psi pi+ pi- JPIPI; Enddecay

```
Decay J/psi
0.5000 e+ e- PHOTOS VLL;
0.5000 mu+ mu- PHOTOS VLL;
Enddecay
```

End

Preamble DEC Cards

$e^+e^- \rightarrow f_0(980)\psi(28)$

Particle vpho 4.6819 0.0 Decay vpho 1.0000 ConExc -2 100443 9010221; Enddecay Decay vhdr

1.0000 psi(2S) f_0 PHSP; Enddecay

Decay psi(2S) 1.000 J/psi pi+ pi- JPIPI; Enddecay

Decay f_0 1.0000 pi+ pi- PHSP; Enddecay

Decay J/psi 0.5000 e+ e- PHOTOS VLL; 0.5000 mu+ mu- PHOTOS VLL; Enddecay

End

Signal MC samples 300k events

 $e^+e^- \rightarrow \pi^+\pi\psi(2S)$

Particle vpho 4.6819 0.0 Decay vpho 1.0000 ConExc -2 100443 211 -211 Enddecay

Decay vhdr 1.0000 psi(2S) pi+ pi- VVPIPI; Enddecay

Decay psi(2S) 1.000 J/psi pi+ pi- JPIPI; Enddecay

```
Decay J/psi
0.5000 e+ e- PHOTOS VLL;
0.5000 mu+ mu- PHOTOS VLL;
Enddecay
```

End

Goodness Cuts

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies

Goodness Cuts

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies

Signal MC Studies E/p Selection

Goodness Cuts

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Event Selection

Signal MC sample 300k events

BESIII Physics and Software Meeting - June 2025

Event Selection

Signal MC sample 300k events

Punzi FoM optimisation $\forall \sqrt{s}$ and using only MC datasets

√s	p _{ch} [GeV/c]	√s	p _{ch} [GeV/c]
4.612	0.71	4.740	0.81
4.626	0.73	4.750	0.82
4.640	0.74	4.780	0.85
4.660	0.75	4.840	0.86
4.680	0.77	4.914	0.96
4.700	0.79	4.946	0.97

Event Selection Charged Particles Momentum Optimisation

6-constraint (6C) kinematic fit

1C on the $M_{J/\psi}$ 1C on the $M_{\psi(2S)}$ 4C on the $p_{Tot} = (\sqrt{s^* sin(0.011)}, 0, 0, M_{s})$

The $\pi\pi$ couples are selected via the best χ^2

Event Selection Topology-dependent Kinematic Fits

$2\ell 3\pi$

2-constraint (2C) kinematic fit

1C on the $M_{J/\psi}$ 1C on the $M_{\psi(2S)}$ $[p_{Tot} = (\sqrt{s*sin(0.011)}, 0, 0, M_{s})]$

 $\pi\pi$ and $\pi\pi_{Miss}^*$ couples are selected via the best χ^2

 $^{*}\pi_{Miss}$ either from prompt production or from $\psi(2S)$ decay, but not from $Z_c(4430)$ by asking $p(\Pi_{Miss}) < 0.50 \text{ GeV}$

BESIII Physics and Software Meeting - June 2025

Event Selection Signal Windows Definition

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Selection performed on both the topologies on $M(J/\psi)$ and $M(\psi(2S))$

 σ of the distributions are in the [19, 25] MeV/c² range

BESIII Physics and Software Meeting - June 2025

Event Selection Signal Windows Definition

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Selection performed on both the topologies on $M(J/\psi)$ and $M(\psi(2S))$

 σ of the distributions are in the [19, 25] MeV/c² range

Event Selection Signal Windows Definition

An additional selection is applied on $M_{Miss}(\pi)$ for the $2\ell 3\pi$ topology σ of the distributions are in the [29, 37] MeV/c² range

Events/2.00 MeV 1200

500

(

Background Rejection

$\sqrt{s} = 4.000$	v tree	3.7	
Decay		N_{Evts}	$\Big \sum_{i}^{ ext{Tot}} N_{E}$
$1 \qquad e^+e^- \to \pi^+\pi^-\psi', \psi' \to \pi$	$\pi^+\pi^- J/\psi, J/\psi \to \mu^+\mu^-$	3389	3389
$2 \qquad e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \psi'$	$\pi^+\pi^- J/\psi, J/\psi ightarrow e^+e^-$	2983	6372
3 $e^+e^- \rightarrow \pi^+\pi^-\psi'\gamma^I, \psi' \rightarrow$	$\pi^+\pi^- J/\psi, J/\psi \to \mu^+\mu^-$	2875	9247
4 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi$	$\pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	2528	11775
5 $e^+e^- \rightarrow \pi^+\pi^-\psi'\gamma^I, \psi' \rightarrow$	$\pi^+\pi^- J/\psi, J/\psi ightarrow e^+e^-$	2499	14274
$6 \qquad e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \psi'$	$\pi^+\pi^- J/\psi, J/\psi ightarrow e^+e^-$	2313	16587
7 $e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi$	$\pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	1346	17933
8 $e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \psi'$	$\pi^+\pi^- J/\psi, J/\psi ightarrow e^+e^-$	1249	19182
9 $e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi$	$\pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	1037	20219
10 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \psi'$	$\pi^+\pi^- J/\psi, J/\psi ightarrow e^+e^-$	907	21126
11 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi$	$\pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	307	21433
12 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \psi'$	$\pi^+\pi^- J/\psi, J/\psi ightarrow e^+e^-$	289	21722
13 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi$	$\pi^+\pi^- J/\psi, J/\psi o \mu^+\mu^-$	276	21998
14 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \psi'$	$\pi^+\pi^- J/\psi, J/\psi ightarrow e^+e^-$	245	22243
15 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi$	$\pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	240	22483
16 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \psi'$	$\pi^+\pi^- J/\psi, J/\psi \to e^+e^-$	197	22680
17 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi$	$\pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	188	22868
18 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi$	$\pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	161	23029
19 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \psi'$	$\pi^+\pi^- J/\psi, J/\psi \to e^+e^-$	156	23185
$20 \qquad e^+e^- \to \pi^+\pi$	$^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$	144	23329
21 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi$	$\pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	132	23461
22 $e^+e^- \rightarrow \pi^+\pi^-\psi', ,\psi' \rightarrow$	$\pi^+\pi^- J/\psi, J/\psi \to e^+e^-$	109	23570
$23 \qquad e^+e^- \to \pi^+\pi^-\psi', \psi' \to \pi$	$\pi^+\pi^- J/\psi, J/\psi o \mu^+\mu^-$	104	23674
$24 \qquad e^+e^- \to \pi^+\pi^+$	$\pi^+\pi^-\pi^-\pi^-\gamma^I$	103	23777
25 $e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi$	$\pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	96	23873
26	•		

From 1.3 billion inclusive MC events, 28136 **survive**, with a survival rate of [4, 28] ppm

Virtually only the hadron component is surviving after the selection criteria

Out of 28136 total **IncMC events**, the events are from

- > 90% Non-resonant $\pi\pi\psi(2S)$ signal
- < 10% <u>Multi-π states</u>

Background Rejection

4 68	o GeV		
$\sqrt{s} = 4.00$	Decay tree	N_{Evts}	Σ
1	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$	50	
2	$e^+e^- ightarrow \pi^+\pi^+\pi^-\pi^-\pi^-\gamma^I$	39	
3	$e^+e^- ightarrow \pi^+\pi^+\pi^-\pi^-\pi^-$	19	
4	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$	16	
5	$e^+e^- ightarrow K^0_S K^0_S J/\psi \gamma^I, K^0_S ightarrow \pi^+\pi^-, J/\psi ightarrow \mu^+\mu^-$	10	
6	$e^+e^- ightarrow ilde{K}^0_S ilde{K}^0_S J/\psi, K^0_S ightarrow \pi^+\pi^-, J/\psi ightarrow \mu^+\mu^-$	7	
7	$e^+e^- \rightarrow \pi^+ b_1^- \gamma^f, b_1^- \rightarrow \pi^- \omega, \omega \rightarrow \pi^0 \pi^+ \pi^-$	5	
8	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$	5	
9	$e^+e^- \rightarrow K^0_S K^0_S J/\psi, K^0_S \rightarrow \pi^+\pi^-, J/\psi \rightarrow e^+e^-$	5	
10	$e^+e^- \rightarrow K^0_S K^0_S J/\psi, K^0_S \rightarrow \pi^+\pi^-, J/\psi \rightarrow \mu^+\mu^-$	4	
11	$e^+e^- ightarrow \pi^-b_1^+\gamma^f, b_1^+ ightarrow \pi^+\omega, \omega ightarrow \pi^0\pi^+\pi^-$	4	
12	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$	4	
13	$e^+e^- ightarrow \pi^+\pi^- f_0'\gamma^f, f_0' ightarrow \pi^+\pi^+\pi^-\pi^-$	4	
14	$e^+e^- \rightarrow K^0_S K^0_S J/\psi \gamma^I, K^0_S \rightarrow \pi^+\pi^-, J/\psi \rightarrow e^+e^-$	4	
15	$e^+e^- \rightarrow K^0_S K^0_S J/\psi, K^0_S \rightarrow \pi^+\pi^-, J/\psi \rightarrow e^+e^-$	3	
16	$e^+e^- ightarrow \pi^+b_1^-\gamma^f, b_1^- ightarrow \pi^-\omega, \omega ightarrow \pi^0\pi^+\pi^-$	3	
17	$e^+e^- \rightarrow \pi^+a_0^-\gamma^f, a_0^- \rightarrow \pi^-\eta, \eta \rightarrow \pi^0\pi^+\pi^-$	3	
18	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \chi_{c1}\gamma, \chi_{c1} \rightarrow J/\psi\gamma, J/\psi \rightarrow \mu^+\mu^-$	3	
19	$e^+e^- ightarrow \pi^+\pi^- f_0'\gamma^f, f_0' ightarrow \pi^+\pi^+\pi^-\pi^-$	2	
20	$e^+e^- o \pi^+\pi^- f_0', f_0' o ho^0 ho^0, ho^0 o \pi^+\pi^-$	2	
21	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$	2	
22	$e^+e^- \to \pi^+f_0'a_1^-, f_0' \to \pi^+\pi^-, a_1^- \to \rho^0\pi^-, \rho^0 \to \pi^+\pi^-$	2	
23	$e^+e^- ightarrow \pi^0\pi^0\pi^+\pi^+\pi^-\pi^-$	2	
24	$e^+e^- \rightarrow \pi^+ b_1^- \gamma^f, b_1^- \rightarrow \pi^- \omega, \omega \rightarrow \pi^0 \pi^+ \pi^-$	2	
25	$e^+e^- \rightarrow \pi^+b_1^-, b_1^- \rightarrow \pi^-\omega, \omega \rightarrow \pi^+\pi^+\pi^-\pi^-$	2	
26	•••		

$\sum_{i}^{ m Tot} N_{Evts}$	
50	
89	
108	
124	
134	
144	Dense vin ethe signal serves an entte the
149	Removing the signal component to the
151	inclusive MC samples
156	
160	
164	
168	The resulting contribution is of the order
172	The resulting contribution is of the order
176	O(1 ppm) over the total number of
179	• • • •
182	simulated event
185	
188	
190	I I I I I I I I I I I I I I I I I
192	The background oscillates
194	
196	between 2% and 23%
198	
200	
202	

Cut Flow of Event Selection

$ ext{Cuts} \; [\sqrt{s} = 4.680 \; ext{GeV}]$	Events	Efficiency [%]			
Total Tracks	300000	100			
Fiducial	253871	84.62			
Kinetic PID	215785	71.93			
5 Trks Events - Kalman Fit $1\mathrm{C}$	38643	12.88			
6 Trks Events - Kalman Fit 1C	76189	25.40			
5&6 Trks Events 114832 38.28					
Table 9: Cut-flow for the $e^+e^- \rightarrow$					
$\pi^+\pi^-\psi(2S)$ process at	$\sqrt{s} =$	4.680 GeV.			

${\rm Cuts}\;[\sqrt{s}=4.740\;{\rm GeV}]$	Events	Efficiency [%]					
Total Tracks	300000	100					
Fiducial	256133	85.38					
Kinetic PID	217253	72.42					
$5~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	34636	11.55					
6 Trks Events - Kalman Fit 1C	72349	24.12					
5&6 Trks Events	106985	35.66					
Table 11: Cut-flow for the $e^+e^- \rightarrow$							
$\pi^+\pi^-\psi(2S)$ process at	$\pi^+\pi^-\psi(2S)$ process at $\sqrt{s} = 4.740$ GeV.						

${\rm Cuts}\;[\sqrt{s}=4.700\;{\rm GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100
Fiducial	254488	84.83
Kinetic PID	215839	71.95
$5~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	38900	12.97
$6~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	76203	25.40
5&6 Trks Events	115103	38.37
Table 10: Cut-flow	for th	$e e^+e^- \rightarrow$

 $\pi^+\pi^-\psi(2S)$ process at $\sqrt{s} = 4.700$ GeV.

$ ext{Cuts} \; [\sqrt{s} = 4.750 \; ext{GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100
Fiducial	256091	85.36
Kinetic PID	216867	72.29
5 Trks Events - Kalman Fit $1\mathrm{C}$	33433	11.14
6 Trks Events - Kalman Fit 1C	71096	23.70
5&6 Trks Events	104529	34.84
Table 12: Cut-flow	for th	$e e^+e^- \rightarrow$
$\pi^+\pi^-\psi(2S)$ process at	$\sqrt{s} =$	$4.750 {\rm GeV}.$

Extraction of the $\sigma(e^+e^- \longrightarrow \pi^+\pi^-\psi(2S))$

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Extraction of the $\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(2S))$ Signal Shape & Efficiency

BESII

For **each** \sqrt{s} , the **signal** is modelled via a signal MC sample with a **sum of** Gaussian and Crystal Ball functions

<Efficiency> ~36%_{Conexc}

 σ (from Ref. [11]) is used as input to estimate the vacuum polarisation factor and the ISR correction, an iterative procedure is performed based on the relation

3.705 3.71 $M(\pi^+ \pi^- J/\psi) (GeV/c^2)$

The final σ_{Born} is obtained when the nth iteration is consistent with a previous iteration within 0.5% for each centre-of-mass energy

[11] Phys. Rev. D **104**, 052012

Events/5.00 MeV/c² 16 14 BESIII NeV/C Data @√s = 4612 MeV I Data @√s = 4640 MeV Fit result - --- Signal Signal Background @√s = 4.610 GeV Background 12 10 8 6 Events/5.00 80 60 40ŀ 20 3.64 3.66 3.72 3.74 3.62 3.68 $M(\pi^+\pi^-J/\psi)$ (GeV/c²) MeV/C₂ 250 Events/5.00 MeV/c² BESIII 30 ▲ Data @√s = 4680 MeV I Data @√s = 4740 MeV 25 signa @√s = 4.680 GeV ---- Backgroun Backgroun 00 20ŀ Events/5.0 15E 50H **0**<u>-</u> 3.74 (GeV/*c*²) 3.64 3.66 3.7 3.72 3.66 3.62 3.68 3.62 М $M(\pi^+\pi^-J/\psi)$ (GeV/c²) vents/5.00 MeV/c² BESIII MeV/c 50F ▲ Data @√s = 4780 MeV Data @ s = 4914 MeV Fit result Signal ---- Signal @√s = 4.780 GeV ---- Background Background vents/5.00 30 20 Ш Ш 10F 3.72 3.74 M.... (GeV/c²) 3.66 3.66 3.68 3.7 3.64 3.64

 $M(\pi^+\pi^-J/\psi)$ (GeV/c²)

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Data Fits

For **each** \sqrt{s} , the $\pi\pi\psi(2S)$ contribution is extracted by fitting the $M(\pi\pi J/\psi)$ invariant spectrum

The **signal** is modelled with a **sum of Gaussian and Crystal Ball**

A **polynomial** function is used to describe the **background**

Extraction of the $\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(2S))$ $\pi\pi\psi(2S)$ cross-section

$$\sigma_{\text{Born}} = \frac{N_{\text{Obs}}}{\mathcal{L}(1+\delta)\frac{1}{|1-\Pi^2|}\epsilon\mathcal{B}}$$

The observed **cross-section** is **compatible** with the previous result of **Ref. [11]**

Results from BELLE and BaBar are reported too, further confirming the compatibility of this thesis' results with the published literature

[11] Phys. Rev. D **104**, 052012

E_{CoM} (MeV)	$\mathcal{L} (\mathrm{pb}^{-1})$	$N_{\rm Obs}$	ϵ (%)	$\sigma_{\rm Observed} ~({\rm pb})$	$(1+\delta)$	$\frac{1}{ 1-\Pi ^2}$	$\sigma_{ m Born}~(m pb)$
4611.86	103.65	26^{+5}_{-5}	38.00	$16.49^{+3.17}_{-3.17}$	0.893	1.05453	$17.51^{+3.37}_{-3.37}$
4628.00	521.53	156^{+14}_{-13}	39.22	$19.06\substack{+1.71 \\ -1.59}$	0.886	1.05444	$20.40^{+1.83}_{-1.70}$
4640.91	551.65	$203\substack{+16\-15}$	40.36	$22.78^{+1.80}_{-1.68}$	0.854	1.05442	$25.28\substack{+1.99\-1.87}$
4661.24	529.43	202^{+15}_{-15}	39.88	$23.90\substack{+1.77 \\ -1.77}$	0.878	1.05441	$25.81^{+1.92}_{-1.92}$
4681.92	1667.39	518^{+24}_{-23}	37.99	$20.43\substack{+0.95 \\ -0.91}$	0.950	1.05448	$20.39\substack{+0.95\-0.91}$
4698.82	535.54	173^{+14}_{-14}	38.21	$21.12^{+1.71}_{-1.71}$	0.925	1.05453	$21.67^{+1.75}_{-1.75}$
4739.70	163.87	37^{+7}_{-6}	35.51	$15.89\substack{+3.01\-2.58}$	1.045	1.05484	$14.42\substack{+2.73\-2.34}$
4750.05	366.55	77^{+9}_{-8}	34.79	$15.09^{+1.76}_{-1.57}$	1.054	1.05493	$13.57^{+1.59}_{-1.41}$
4780.54	511.47	84^{+10}_{-9}	32.90	$12.47^{+1.48}_{-1.34}$	1.126	1.05518	$10.50^{+1.25}_{-1.13}$
4843.07	525.16	66^{+9}_{-8}	30.52	$10.29^{+1.40}_{-1.25}$	1.150	1.05570	$8.48^{+1.16}_{-1.03}$
4918.02	207.82	19^{+5}_{-4}	29.24	$7.81^{+2.06}_{-1.64}$	1.255	1.05623	$5.89^{+1.55}_{-1.24}$
4950.93	159.28	23^{+6}_{-5}	34.16	$10.56\substack{+2.76 \\ -2.30}$	0.999	1.05636	$10.01\substack{+2.61\-2.18}$

Extraction of the $\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(2S))$

$\pi\pi\psi(2S)$ cross-section

Study of the Intermediate States

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Study of the Intermediate States

In **Ref.[11]**, a **simplified PWA** performed on the data sets highlighted $f_0(500)$ and $f_0(980)$ contributions

BESIII Physics and Software Meeting - June 2025

Study of the Intermediate States

BESIII Physics and Software Meeting - June 2025

Cut Flow of Event Selection

${ m Cuts}\; [\sqrt{s}=4.680\;{ m GeV}]$	Events	Efficiency [%]	${ m Cuts}\; [\sqrt{s}=4.700\;{ m GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100	Total Tracks	300000	100
Fiducial	252843	84.28	Fiducial	253827	84.61
Kinetic PID	217074	72.36	Kinetic PID	217904	72.63
5 Trks Events - Kalman Fit $1\mathrm{C}$	37655	12.55	5 Trks Events - Kalman Fit 1C	37898	12.63
6 Trks Events - Kalman Fit 1C	92285	30.76	6 Trks Events - Kalman Fit 1C	91744	30.58
5&6 Trks Events	129940	43.31	5&6 Trks Events	129642	43.21
Table22:Cut	-flow	for the	Table 23: Cut	-flow	for the
$e^+e^- \rightarrow f_0(980)\psi($	2S)]	process at	$e^+e^- \rightarrow f_0(980)\psi($	2S) j	process at
$\sqrt{s} = 4.680 { m GeV}.$			$\sqrt{s} = 4.700$ GeV.		
${\rm Cuts}\;[\sqrt{s}=4.740\;{\rm GeV}]$	Events	Efficiency [%]	${\rm Cuts}\;[\sqrt{s}=4.750\;{\rm GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100	Total Tracks	300000	100
Fiducial	256114	85.37	Fiducial	256903	85.63
Kinetic PID	219228	73.08	Kinetic PID	220067	73.36
5 Trks Events - Kalman Fit $1\mathrm{C}$	35609	11.87	5 Trks Events - Kalman Fit 1C	34937	11.65
6 Trks Events - Kalman Fit 1C	89614	29.87	6 Trks Events - Kalman Fit 1C	87306	29.10
5&6 Trks Events	125223	41.74	5&6 Trks Events	122243	40.75
Table24:Cut	-flow	for the	Table25:Cut	-flow	for $th\epsilon$
$e^+e^- \rightarrow f_0(980)\psi($	2S)]	process at	$e^+e^- \rightarrow f_0(980)\psi($	2S) j	process at
$\sqrt{s} = 4.740 \text{ GeV}$			$\sqrt{s} = 4.750 \text{ GeV}$		

${ m Cuts}\;[\sqrt{s}=4.680\;{ m GeV}]$	Events	Efficiency [%]	Cuts	$[\sqrt{s} = 4.70]$	00 GeV]	Events	Efficiency	r [%]
Total Tracks	300000	100		Total Trac	ks	300000	100	
Fiducial	252843	84.28		Fiducial		253827	84.61	
Kinetic PID	217074	72.36		Kinetic Pl	ID	217904	72.63	
5 Trks Events - Kalman Fit $1\mathrm{C}$	37655	12.55	5 Trks E	vents - Kal	man Fit 1C	37898	12.63	
6 Trks Events - Kalman Fit 1C	92285	30.76	6 Trks E	vents - Kal	man Fit 1C	91744	30.58	
5&6 Trks Events	129940	43.31	54	&6 Trks Ev	vents	129642	43.21	
Table22:Cut	-flow	for the	Table	23:	Cut	-flow	for	$ h\epsilon$
$e^+e^- \rightarrow f_0(980)\psi($	2S)]	process at	e^+e^-	$\rightarrow f$	$_0(980)\psi($	2S)	process	at
$\sqrt{s} = 4.680$ GeV.			$\sqrt{s}=4$.700 Ge	eV.			
${\rm Cuts}\;[\sqrt{s}=4.740\;{\rm GeV}]$	Events	Efficiency [%]	Cuts	$\sqrt{s} = 4.75$	50 GeV]	Events	Efficiency	· [%]
Total Tracks	300000	100		Total Trac	ks	300000	100	
Fiducial	256114	85.37		Fiducial		256903	85.63	
Kinetic PID	219228	73.08		Kinetic Pl	ID	220067	73.36	
5 Trks Events - Kalman Fit $1\mathrm{C}$	35609	11.87	5 Trks E	vents - Kal	man Fit 1C	34937	11.65	
6 Trks Events - Kalman Fit 1C	89614	29.87	6 Trks E	vents - Kal	man Fit 1C	87306	29.10	
5&6 Trks Events	125223	41.74	5	&6 Trks Ev	vents	122243	40.75	
Table24:Cut	-flow	for the	Table	25:	Cut	-flow	for	$ h\epsilon$
$e^+e^- \rightarrow f_0(980)\psi($	2S)]	process at	e^+e^-	$\rightarrow f$	$_0(980)\psi($	2S)	process	at
$\sqrt{s}=4.740~{ m GeV}.$			$\sqrt{s}=4$.750 Ge	eV.			

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

For **each** \sqrt{s} , the **f**₀(980) contribution is extracted by fitting the M($\pi\pi$) and M($\pi\psi$ (2S)) invariant distributions

The signal is a **Flatté smeared by a Gauss(0, σ)** multiplied by a threshold function

$$BW(s) = \frac{1}{s - M^2 + i(g_1 \rho_{\pi\pi}(s) + g_2 \rho_{KK}(s))}$$

The $f_0(500)$ contribution is modelled with

$$BW(s) = \frac{1}{s - M_0^2 + i\sqrt{s}\Gamma}$$

with an energy-dependent width à la E791...

$$\Gamma(s) = \sqrt{1 - \frac{4m_{\pi^{\pm}}^2}{s}\Gamma}$$

BESIII Physics and Software Meeting - June 2025

Extraction of the $\sigma(f_0(980) \psi(2S))$ f₀(980) contribution

For **each \sqrt{s}**, the **f₀(980)** contribution is extracted by fitting the M($\pi\pi$) and M($\pi\psi$ (2S)) invariant distributions

The signal is a **MS shape smeared by a Gauss(0, \sigma)**

The **f**₀(500) and **PHSP** contributions are modelled too by a **MS shape**

Extraction of the $\sigma(f_0(980) \psi(2S))$ f₀(980) contribution

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

No particular structures

can be recognised

Within the statistical uncertainty, $\sigma_{Born} \mathbf{X} \mathbf{B}$ is **flat** wrt $\sigma_{Born}(\pi \pi \psi(2S))$

The hypothesis of the **Y(4660)** being an **f₀(980) - ψ(2S) molecule**^[12] cannot be confirmed

[12] Phys. Lett. B 665, 26-29 (2008)

Extraction of the $\sigma(f_0(980) \psi(2S))$

E_{CoM} (MeV)	$N_{ m Obs}^{f_0(980)}$	$\epsilon^{f_0(980)}$ (%)	$(1+\delta)$	$\frac{1}{ 1-\Pi ^2}$	$\sigma \times \mathcal{B} (\text{pb})$
4611.86	16 ± 4	0.4858	0.677	1.05453	2.21 ± 2.78
4628.00	107 ± 10	0.4795	0.673	1.05444	15.07 ± 1.41
4640.91	155 ± 11	0.4792	0.714	1.05442	19.47 ± 1.38
4661.24	120 ± 10	0.4533	0.792	1.05441	14.96 ± 1.25
4681.92	337 ± 15	0.4331	0.817	1.05448	13.53 ± 0.60
4698.82	120 ± 9	0.4321	0.804	1.05453	15.28 ± 1.15
4739.70	34 ± 4	0.4174	0.847	1.05484	13.90 ± 1.63
4750.05	63 ± 5	0.4075	0.902	1.05493	11.07 ± 0.88
4780.54	43 ± 7	0.3478	1.103	1.05518	5.19 ± 0.84
4843.07	43 ± 8	0.3601	0.972	1.05570	5.54 ± 1.03
4918.02	11 @90% C.L.	0.3963	0.889	1.05623	3.55 @90% C.L.
4950.93	12 @90% C.L.	0.3870	0.895	1.05636	5.14 @90% C.L.

[12] Phys. Lett. B 665, 26-29 (2008)

Systematic Uncertainties on the Cross-sections

- Luminosity: 1% as from Ref. [13]
- Vacuum polarisation: 0.5% from Ref. [14]
- ISR radiative corrections: Difference in the $(1 + \delta)$ between the between the first (flat crosssection hypothesis) and the last iterations is taken as systematic uncertainty
- Tracking efficiency: 1.0% per track^[10], 2.0% (leptons) and 3.5% (average of 2 pion-topologies) • Intermediate states branching fractions: from PDG
- Lepton separation, trigger efficiency, and FSR: 1.0% from Ref. [11]

[10] Phys. Rev. Lett **110**, 252001 [11] Phys. Rev. D **104**, 052012 [13] Chin. Phys. C 46, 11, 113003 [14] Sov. J. Nucl. Phys **41**, 466-472

Systematic Uncertainties on the Cross-sections

- $(< 0.5\sigma)$ deviations were observed
- Different Generator: With KKMC, < 0.5σ (non-significant) deviations were observed • Bin Size: Differences wrt the nominal value oscillate within 1σ significance, passing the
- Barlow's test
- Background Shape: Inclusive MC shape was tested. Differences with respect the nominal values oscillate within 1.1σ significance for every energy point. Despite being relatively small the difference, this systematic source (taken as the difference) was added
- $f_0(500)/f_0(980)$ Masses and Widths: Changed up to $\pm 5\sigma$ from PDG. From the broad spectrum of tests all the differences oscillate within 1.5σ significance, passing the Barlow's test
- $f_0(980)$ Shape: In the nnspectrum a Crystallball function was tested, while in the n ψ spectrum a Gaussian with a non-zero bias and with a different spread was tried. All the tested scenarios differ from the nominal value by less than 3σ , passing the Barlow's Test

• Mass veto windows: Variations in veto windows were considered up to $\pm 6\sigma$. No significant

35

Systematic Uncertainties on the Cross-sections

$\pi\pi\psi(2S)$ cross-section

Sample	Luminosity	Vacuum	ISR	Tracking	Intermediate	Other	Bkg.	Total
		polarisation	corrections	efficiency	States \mathcal{B}	sources	Shape	
4.612	1.00	0.50	8.03	3.50	1.00	0.90	38.46	39.48
4.626	1.00	0.50	5.31	3.50	1.00	0.89	1.28	6.72
4.640	1.00	0.50	6.03	3.50	1.00	0.86	9.85	12.19
4.660	1.00	0.50	4.20	3.50	1.00	0.88	1.49	5.92
4.680	1.00	0.50	1.54	3.50	1.00	0.95	0.00	4.22
4.700	1.00	0.50	3.49	3.50	1.00	0.93	10.40	11.65
4.740	1.00	0.50	0.17	3.50	1.00	1.05	40.54	40.73
4.750	1.00	0.50	0.61	3.50	1.00	1.06	7.79	8.76
4.780	1.00	0.50	0.14	3.50	1.00	1.13	0.00	3.97
4.840	1.00	0.50	1.67	3.50	1.00	1.16	31.82	32.11
4.914	1.00	0.50	0.06	3.50	1.00	1.26	10.53	11.27
4.946	1.00	0.50	7.11	3.50	1.00	1.00	8.70	11.90

Systematic Uncertainties on the Cross-sections $f_0(980) \psi(2S)$ cross-section

Sample	Luminosity	Vacuum	ISR	Tracking	Intermediate	Other	Bkg.	Total
Sample	Dummosity	polarisation	corrections	efficiency	States ${\cal B}$	sources	Shape	IOtai
4.612	1.00	0.50	3.35	3.50	1.00	0.68	0.06	5.12
4.626	1.00	0.50	6.63	3.50	1.00	0.68	0.11	7.67
4.640	1.00	0.50	3.50	3.50	1.00	0.72	0.03	5.22
4.660	1.00	0.50	2.44	3.50	1.00	0.80	0.09	4.59
4.680	1.00	0.50	0.81	3.50	1.00	0.82	0.03	3.98
4.700	1.00	0.50	0.93	3.50	1.00	0.81	0.00	4.00
4.740	1.00	0.50	0.03	3.50	1.00	0.85	0.03	3.90
4.750	1.00	0.50	3.81	3.50	1.00	0.91	0.06	5.47
4.780	1.00	0.50	7.63	3.50	1.00	1.11	0.16	8.60
4.840	1.00	0.50	0.40	3.50	1.00	0.98	0.12	3.95
4.914								
4.946								

Final Born Cross-sections Results

Sample	$\sigma_{ m Born}(\pi^+\pi^-\psi(2S))~(m pb)$	$\sigma_{\rm Born}(f_0(980)\psi(2S)) \times \mathcal{B}(f_0(980) \to \pi^+\pi^-) ~({\rm pb})$
4.612	$17.51^{+3.37}_{-3.37}\pm6.91$	$2.21^{+2.78}_{-2.78}\pm0.11$
4.626	$20.40^{+1.83}_{-1.70}\pm1.37$	$15.07^{+1.41}_{-1.41}\pm1.16$
4.640	$25.28^{+1.99}_{-1.87}\pm3.08$	$19.47^{+1.38}_{-1.38}\pm1.02$
4.660	$25.81^{+1.92}_{-1.92}\pm1.53$	$14.96^{+1.25}_{-1.25}\pm0.69$
4.680	$20.39^{+0.95}_{-0.91}\pm0.86$	$13.53^{+0.60}_{-0.60}\pm0.54$
4.700	$21.67^{+1.75}_{-1.75}\pm2.52$	$15.28^{+1.15}_{-1.15}\pm0.61$
4.740	$14.42^{+2.73}_{-2.34}\pm 5.87$	$13.90^{+1.63}_{-1.63}\pm0.54$
4.750	$13.57^{+1.59}_{-1.41}\pm1.19$	$11.07^{+0.88}_{-0.88}\pm0.61$
4.780	$10.50^{+1.25}_{-1.13}\pm0.42$	$5.19^{+0.84}_{-0.84}\pm0.45$
4.840	$8.48^{+1.16}_{-1.03}\pm2.72$	$5.54^{+1.03}_{-1.03}\pm0.22$
4.914	$5.89^{+1.55}_{-1.24}\pm0.66$	3.55 @90% C.L.
4.946	$10.01^{+2.61}_{-2.18}\pm1.19$	5.14 @90% C.L.

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Cut Flow of Event Selection

${ m Cuts}\;[\sqrt{s}=4.680\;{ m GeV}]$	Events	Efficiency [%]		$ ext{Cuts} \; [\sqrt{s} = 4.700 \; ext{GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100	-	Total Tracks	300000	100
Fiducial	250531	83.51		Fiducial	252119	84.04
Kinetic PID	210770	70.26		Kinetic PID	212800	70.93
5 Trks Events - Kalman Fit $1\mathrm{C}$	51886	17.30		5 Trks Events - Kalman Fit $1\mathrm{C}$	51570	17.19
6 Trks Events - Kalman Fit 1C	92451	30.82		6 Trks Events - Kalman Fit 1C	94101	31.37
5&6 Trks Events	144337	48.11		5&6 Trks Events	145671	48.56
Table 35:Cut-flow	for th	$e e^+e^- \rightarrow$, r	Fable 36: Cut-flow	for the	e $e^+e^ ightarrow$
$\pi^{\mp} Z_c(4430)^{\pm} \to \pi^+ \pi^-$	$\psi(2S)$	process at	5 <i>1</i>	$\pi^{\mp} Z_c(4430)^{\pm} \to \pi^+ \pi^-$	$\psi(2S)$	process at
$\sqrt{s} = 4.680$ GeV.			١	$\sqrt{s} = 4.700$ GeV.		

${\rm Cuts}\;[\sqrt{s}=4.740\;{\rm GeV}]$	Events	Efficiency [%]	$ ext{Cuts} [\sqrt{s} = 4.750 ext{ GeV}] ext{ Events Efficiency [\%]}$
Total Tracks	300000	100	Total Tracks 300000 100
Fiducial	254349	84.78	Fiducial 254486 84.83
Kinetic PID	214356	71.45	Kinetic PID 213609 71.20
$5~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	49170	16.39	5 Trks Events - Kalman Fit 1C $ $ 47993 $ $ 16.00
6 Trks Events - Kalman Fit 1C	97184	32.39	6 Trks Events - Kalman Fit 1C 97526 32.51
5&6 Trks Events	146354	48.78	5&6 Trks Events 145519 48.51
Table 37:Cut-flow	for th	$e e^+e^- \rightarrow$	Table 38: Cut-flow for the e^+e^- –
$\pi^{\mp} Z_c(4430)^{\pm} \to \pi^+ \pi^-$	$\psi(2S)$	process at	$\pi^{\mp} Z_c(4430)^{\pm} \rightarrow \pi^+ \pi^- \psi(2S)$ process a
$\sqrt{s} = 4.740 { m GeV}.$			$\sqrt{s} = 4.750 \mathrm{GeV}.$

Signal MC Shape Extraction

\s [Ge\/]	W _{Normalised} =	
	(σ x ∠)/(σ x ∠) 4.680	
4.612	0.05	
4.626	0.31	
4.640	0.41	
4.660	0.40	
4.680	1.00	
4.700	0.34	
4.740	0.07	
4.750	0.15	
4.780	0.16	
4.840	0.13	
4.914	0.04	
4.946	0.05	

Signal function MC Signal Shape

BESIII Physics and Software Meeting - June 2025

Signal MC Shape Extraction

\s [Ge\/]	W _{Normalised} =	
	(σ x ∠)/(σ x ∠) 4.680	
4.612	0.05	
4.626	0.31	
4.640	0.41	
4.660	0.40	
4.680	1.00	
4.700	0.34	
4.740	0.07	
4.750	0.15	
4.780	0.16	
4.840	0.13	
4.914	0.04	
4.946	0.05	

Signal function MC Signal Shape

BESIII Physics and Software Meeting - June 2025

Drawing from the f₀(980) study, the the **M**(ππ) and **M**(πψ(2S)) invariant distributions are **fitted without Z_c(4430)** contribution

The two f₀ states are described by analytical shapes, with the f₀(980) being a weighted sum of 12 Flattés

All the other shapes are taken from MC simulation

Drawing from the $f_0(980)$ study, the the $M(\pi\pi)$ and $M(\pi\psi(2S))$ invariant distributions are **fitted** without Z_c(4430) contribution

Adding Z_c(4430) contribution does not improve the fit significantly

N(f₀(980))

 $N(f_0(500))$

N(PHSP)

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Value

 988 ± 29

 384 ± 29

 248 ± 41

BESIII Physics and Software Meeting - June 2025

The **Bayesian U.L.** is obtained by integrating the posterior distribution using the **Metropolis**-Hastings algorithm with a uniform proposal **distribution**, a upper limit (U.L.) with a **Uniform** prior and incorporating the systematic uncertainties

BESIII Physics and Software Meeting - June 2025

 $R = \frac{\sigma_{\rm Born}(e^+e^- \to \pi^{\pm}Z_c(4430)^{\mp} \to \pi^+\pi^-\psi(2S))}{\sigma_{\rm Born}(e^+e^- \to \pi^+\pi^-\psi(2S))} < 0.7 \%$

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Production Ratio Estimation

When **compared with the paper**^[10] used as motivation for this analysis, the $Z_{c}(4430)^{\pm}$ state production in the $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\psi(2S)$ channel is suppressed by at least 20 times with respect to that of the $Z_c(3900)^{\pm}$ hadron in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

Conclusions and Outlook

- - ^{**} A search for the Z_c(4430) exotic state $@\sqrt{s} < 5.0$ GeV is performed via the

Using twelve data samples with a total integrated luminosity of $\sim 5 \text{ fb}^{-1}$ @Vs = [4.612, 4.946]

The e⁺e⁻ $\rightarrow \pi^+\pi^-\psi(2S)$ reaction is studied GeV, below 4.7 GeV the reaction is consistent with the results of Ref. [11], while above the cross-section is measured for the first time

The contribution of the $e^+e^- \rightarrow f_0(980)\psi(2S)$ process is found for the first time and its cross section is measured, a structure can be recognised around 4.666 GeV

The non trivial structure suggest some kind of link between the Y(4660) state and the $f_0(980) \psi(2S)$ bound state, but the statistical uncertainty prevents conclusion

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction, but no evident $Z_c(4430)$ is found and a Bayesian upper limit at the 90% confidence level (C.L.) is set

Thanks for your attention!

Event Selection Charged Particles Momentum Optimisation

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

BESIII Physics and Software Meeting - June 2025

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Event Selection

Charged Particles Momentum Optimisation

BESIII Physics and Software Meeting - June 2025

$p(\pi_{Miss})$ Cut

BESIII Physics and Software Meeting - June 2025

After Selection Comparison Inclusive MC / Signal MC [no Zc] / Data

BESIII Physics and Software Meeting - June 2025

Cut Flow of Event Selection

$ ext{Cuts} \; [\sqrt{s} = 4.612 \; ext{GeV}]$	Events	Efficiency [%]	$ ext{Cuts} \; [\sqrt{s} = 4.626 \; ext{GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100	Total Tracks	300000	100
Fiducial	252731	84.24	Fiducial	252435	84.15
Kinetic PID	215256	71.75	Kinetic PID	215129	71.71
$5~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	40301	13.43	5 Trks Events - Kalman Fit 1C	41271	13.76
6 Trks Events - Kalman Fit 1C	74211	24.74	6 Trks Events - Kalman Fit 1C	76882	25.63
5&6 Trks Events	114512	38.17	5&6 Trks Events	118153	39.38
Table 5: Cut-flow f	or the	$e^+e^- \rightarrow$	Table 6: Cut-flow fo	or the	$e^+e^- \rightarrow$
$\pi^+\pi^-\psi(2S)$ process at	$\sqrt{s} =$	$4.612 {\rm GeV}.$	$\pi^+\pi^-\psi(2S)$ process at $\sqrt{2}$	$\sqrt{s} = \delta$	$4.626 \mathrm{GeV}$

$\text{Cuts} \; [\sqrt{s} = 4.640 \; \text{GeV}]$	Events	Efficiency [%]			
Total Tracks	300000	100			
Fiducial	253398	84.47			
Kinetic PID	215811	71.94			
$5~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	42034	14.01			
6 Trks Events - Kalman Fit 1C	79623	26.54			
5&6 Trks Events	121657	40.55			
Table 7: Cut-flow for the $e^+e^- \rightarrow$					
$\pi^+\pi^-\psi(2S)$ process at	$\sqrt{s} =$	4.640 GeV.			

${\rm Cuts}\;[\sqrt{s}=4.660\;{\rm GeV}]$	Events	Efficiency [%]				
Total Tracks	300000	100				
Fiducial	253456	84.49				
Kinetic PID	215117	71.71				
5 Trks Events - Kalman Fit 1C	40847	13.62				
6 Trks Events - Kalman Fit 1C	79447	26.48				
5&6 Trks Events	120294	40.10				
Table 8: Cut-flow for the e^+e^- –						
$\pi^+\pi^-\psi(2S)$ process at	$\pi^+\pi^-\psi(2S)$ process at $\sqrt{s} = 4.660$ GeV.					

Cut Flow of Event Selection

${\rm Cuts}\;[\sqrt{s}=4.780\;{\rm GeV}]$	Events	Efficiency [%]					
Total Tracks	300000	100					
Fiducial	256749	85.58					
Kinetic PID	217568	72.52					
5 Trks Events - Kalman Fit 1C	31676	10.56					
6 Trks Events - Kalman Fit 1C	67410	22.47					
5&6 Trks Events	99086	33.03					
Table 13: Cut-flow for the $e^+e^- \rightarrow$							
$\pi^+\pi^-\psi(2S)$ process at	$\pi^+\pi^-\psi(2S)$ process at $\sqrt{s} = 4.780$ GeV.						

$\text{Cuts} \; [\sqrt{s} = 4.914 \; \text{GeV}]$	Events	Efficiency [%]				
Total Tracks	300000	100				
Fiducial	257593	85.86				
Kinetic PID	217033	72.34				
5 Trks Events - Kalman Fit 1C	26535	8.85				
6 Trks Events - Kalman Fit 1C	61331	20.44				
5&6 Trks Events	87866	29.29				
Table 15:Cut-flow	for th	$e e^+e^- \rightarrow$				
$\pi^+\pi^-\psi(2S)$ process at $\sqrt{s}=4.914$ GeV.						

$ ext{Cuts} \; [\sqrt{s} = 4.840 \; ext{GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100
Fiducial	257237	85.75
Kinetic PID	215498	71.83
5 Trks Events - Kalman Fit 1C	27921	9.31
6 Trks Events - Kalman Fit 1C	63999	21.33
5&6 Trks Events	91920	30.64
Table 14: Cut-flow	for th	$e e^+e^- \rightarrow$

 $\pi^+\pi^-\psi(2S)$ process at $\sqrt{s} = 4.840$ GeV.

${\rm Cuts}\;[\sqrt{s}=4.946\;{\rm GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100
Fiducial	256900	85.63
Kinetic PID	216006	72.00
5 Trks Events - Kalman Fit $1\mathrm{C}$	30792	10.26
6 Trks Events - Kalman Fit 1C	71913	23.97
5&6 Trks Events	102705	34.24
Table 16: Cut-flow	for th	$e e^+e^- \rightarrow$
$\pi^+\pi^-\psi(2S)$ process at	$\sqrt{s} =$	4.946 GeV.

Signal Shape & Efficiency

Extraction of the $\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(2S))$

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

BESIII Physics and Software Meeting - June 2025

Extraction of the $\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(2S))$ $\pi\pi\psi(2S)$ cross-section

$$\sigma_{\mathrm{Born}} = rac{N_{\mathrm{Obs}}}{\mathcal{L}(1+\delta)rac{1}{|1-\Pi^2|}\epsilon \mathcal{E}}$$

The observed **cross-section** is **compatible** with the previous result of **Ref. [11]**

Results from BELLE and BaBar are reported too, further confirming the compatibility of this thesis' results with the published literature

[11] Phys. Rev. D **104**, 052012

Study of the invariant masses profiles Inclusive MC / Non-resonant MC / Data

Cut Flow of Event Selection $f_0(980) \psi(2S)$ cross-section

$ ext{Cuts} \; [\sqrt{s} = 4.612 \; ext{GeV}]$	Events	Efficiency [%]	${\rm Cuts}\;[\sqrt{s}=4.626\;{\rm GeV}]$	Events	Efficiency [%]	
Total Tracks	300000	100	Total Tracks	300000	100	
Fiducial	251862	83.95	Fiducial	251229	83.74	
Kinetic PID	216412	72.14	Kinetic PID	215973	71.99	
5 Trks Events - Kalman Fit $1\mathrm{C}$	45052	15.02	5 Trks Events - Kalman Fit 1C		14.63	
$6~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	100675	33.56	$6~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	99976	33.33	
5&6 Trks Events	145727	48.58	5&6 Trks Events	143857	47.95	
Table18:Cut	-flow	for the	Table 19: Cut	-flow	for the	
$e^+e^- \rightarrow f_0(980)\psi($	process at	$e^+e^- \rightarrow f_0(980)\psi($	2S)]	process at		
$\sqrt{s}=4.612~{ m GeV}.$			$\sqrt{s}=4.626~{ m GeV}.$			

$\text{Cuts} \; [\sqrt{s} = 4.640 \; \text{GeV}]$	Events	Efficiency [%]	${ m Cuts}\; [\sqrt{s}=4.660\;{ m GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100	Total Tracks	300000	100
Fiducial	251922	83.97	Fiducial	251800	83.93
Kinetic PID	216537	72.18	Kinetic PID	216310	72.10
5 Trks Events - Kalman Fit $1\mathrm{C}$	43047	14.35	5 Trks Events - Kalman Fit $1\mathrm{C}$	39434	13.14
6 Trks Events - Kalman Fit $1\mathrm{C}$	100703	33.57	6 Trks Events - Kalman Fit 1C	96558	32.19
5&6 Trks Events	143750	47.92	5&6 Trks Events	135992	45.33
Table 20: Cut	-flow	for the	Table 21: Cut	c-flow	for the
$e^+e^- \rightarrow f_0(980)\psi($	2S)]	process at	$e^+e^- \rightarrow f_0(980)\psi($	(2S)]	process at
$\sqrt{s} = 4.640 \mathrm{GeV}.$			$\sqrt{s} = 4.660 \mathrm{GeV}.$		

Cut Flow of Event Selection $f_0(980) \psi(2S)$ cross-section

	1			1	50.13
Cuts $[\sqrt{s} = 4.780 \text{ GeV}]$	Events	Efficiency [%]	$\mathrm{Cuts} \; [\sqrt{s} = 4.840 \; \mathrm{GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100	Total Tracks	300000	100
Fiducial	257277	85.76	Fiducial	258147	86.05
Kinetic PID	220006	73.34	Kinetic PID	219406	73.14
5 Trks Events - Kalman Fit $1\mathrm{C}$	30045	10.02	5 Trks Events - Kalman Fit $1\mathrm{C}$	30713	10.24
$6~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	74291	24.76	6 Trks Events - Kalman Fit 1C	77319	25.77
5&6 Trks Events	104336	34.78	5&6 Trks Events	108032	36.01
Table 26: Cut	t-flow	for the	Table27:Cut	t-flow	for the
$e^+e^- \rightarrow f_0(980)\psi($	(2S)]	process at	$e^+e^- \rightarrow f_0(980)\psi($	(2S)]	process at
$\sqrt{s} = 4.780$ GeV.			$\sqrt{s} = 4.840$ GeV.		

${\rm Cuts}\;[\sqrt{s}=4.914\;{\rm GeV}]$	Events	Efficiency [%]	Cuts $[\sqrt{s} = 4.946 \text{ GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100	Total Tracks	300000	100
Fiducial	259012	86.34	Fiducial	258200	86.07
Kinetic PID	219647	73.22	Kinetic PID	218228	72.74
5 Trks Events - Kalman Fit $1\mathrm{C}$	33805	11.27	5 Trks Events - Kalman Fit $1\mathrm{C}$	33605	11.20
6 Trks Events - Kalman Fit 1C	85079	28.36	$6~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	82487	27.50
5&6 Trks Events	118884	39.63	5&6 Trks Events	116092	38.70
Table28:Cut	-flow	for the	Table29:Cut	-flow	for the
$e^+e^- \rightarrow f_0(980)\psi($	2S)]	process at	$e^+e^- \rightarrow f_0(980)\psi($	2S)]	process at
$\sqrt{s}=4.914~{ m GeV}.$ $\sqrt{s}=4.946~{ m GeV}.$					

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

Events/50.0 MeV/*c*² $M(\pi^+\psi(2S))) (GeV/c^2)$

.2 1.4 Μ(π⁺π⁻) (GeV/*c*²)

Extraction of the $\sigma(f_0(980) \psi(2S))$ f₀(980) contribution

M(π⁺ψ(2S))) (GeV/*c*²

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Events/50.0 MeV/*c*²

E_{CoM} (MeV) $\mathbf{N}_{e^+e^-\!\rightarrow}$ 4.6122 4.626 15204.640 2024.660 514.680 174.700 3^{\prime} 4.74074.75084 4.7804.840 6 4.914 1 24.946

$\sigma(e^+e^- - > \pi^+\pi^-\psi(2S)) vs \sigma(f_0(980) \psi(2S))$ Number of Events

$\pi^+\pi^-\psi(2S)$	$\mathbf{N}_{e^+e^- \to f_0(980)\psi(2S)}$
6 ± 5	$16{\pm}4$
6^{+14}_{-13}	$107{\pm}10$
3^{+16}_{-15}	$155{\pm}11$
$2{\pm}15$	$120{\pm}10$
8^{+24}_{-23}	$337{\pm}15$
$3{\pm}14$	$120{\pm}9$
7^{+7}_{-6}	$34{\pm}4$
7^{+9}_{-8}	$63{\pm}5$
4^{+10}_{-9}	$43{\pm}7$
6^{+9}_{-8}	$43{\pm}8$
9^{+5}_{-4}	$0{\pm}2$
3^{+6}_{-5}	$0{\pm}6$

Cut Flow of Event Selection $Z_c(4430)$ Channel

${\rm Cuts}\;[\sqrt{s}=4.612\;{\rm GeV}]$	Events	Efficiency [%]		$ ext{Cuts} \; [\sqrt{s} = 4.626 \; ext{GeV}]$	Events	Efficiency [%]	
Total Tracks	300000	100	100 Total Tracks		300000	100	
Fiducial	245103	81.70	81.70 Fiducial			82.16	
Kinetic PID	205613	68.54	Kinetic PID			69.46	
5 Trks Events - Kalman Fit $1\mathrm{C}$	56606	18.87		$5~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	56918	18.97	
$6~{\rm Trks}$ Events - Kalman Fit $6{\rm C}$	85113	28.37		6 Trks Events - Kalman Fit 6C		28.94	
5&6 Trks Events	141719	47.24		5&6 Trks Events		47.914	
Table 31: Cut-flow	for the	$e e^+e^- \rightarrow$	> '.	Fable 32: Cut-flow	for the	e $e^+e^- \rightarrow$	
$\pi^{\mp} Z_c(4430)^{\pm} \rightarrow \pi^+ \pi^- \psi(2S)$ process at			t 1	$\pi^{\mp} Z_c(4430)^{\pm} \rightarrow \pi^+ \pi^- \psi(2S)$ process at			
$\sqrt{s} = 4.612$ GeV.				$\sqrt{s}=4.626~{ m GeV}.$			

${ m Cuts}\;[\sqrt{s}=4.640\;{ m GeV}]$	Events	Efficiency [%]	-	$ ext{Cuts} \; [\sqrt{s} = 4.660 \; ext{GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100	-	Total Tracks	300000	100
Fiducial	247866	82.62		Fiducial	249041	83.01
Kinetic PID	209294	69.76		Kinetic PID	208637	69.55
5 Trks Events - Kalman Fit $1\mathrm{C}$	55614	18.54		$5~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	52654	17.55
6 Trks Events - Kalman Fit 6C	88441	29.48		6 Trks Events - Kalman Fit $1\mathrm{C}$	90043	30.01
5&6 Trks Events	144055	48.02	_	5&6 Trks Events	142697	47.57
Table 33:Cut-flow	for th	$e e^+e^- \rightarrow$	·]	Table 34: Cut-flow	for th	$e e^+e^- \rightarrow$
$\pi^{\mp} Z_c(4430)^{\pm} \rightarrow \pi^+ \pi^- \psi(2S)$ process at				$\pi^{\mp} Z_c(4430)^{\pm} \to \pi^{+} \pi^{-}$	$\psi(2S)$	process at
$\sqrt{s}=4.640~{ m GeV}.$			1	$\sqrt{s} = 4.660 \text{ GeV}.$		

Cut Flow of Event Selection $Z_c(4430)$ Channel

${\rm Cuts}\;[\sqrt{s}=4.780\;{\rm GeV}]$	Events	Efficiency [%]	Cuts [$\sqrt{s} = 4.840$ GeV] Events Efficiency [%]			
Total Tracks	300000	100	Total Tracks 300000 100			
Fiducial	256032	85.34	Fiducial 257755 85.92			
Kinetic PID	215601	71.87	Kinetic PID 213379 71.13			
5 Trks Events - Kalman Fit $1\mathrm{C}$	47160	15.72	5 Trks Events - Kalman Fit 1C 43005 14.34			
6 Trks Events - Kalman Fit 1C	99346	33.12	6 Trks Events - Kalman Fit 1C 98092 32.70			
5&6 Trks Events	146506	48.84	5&6 Trks Events 141097 47.03			
Table 39: Cut-flow	for th	$e e^+e^- \rightarrow$	• Table 40: Cut-flow for the e^+e^- –			
$\pi^{\mp} Z_c(4430)^{\pm} \rightarrow \pi^+ \pi^- \psi(2S)$ process at			$\pi^{\mp} Z_c(4430)^{\pm} \rightarrow \pi^+ \pi^- \psi(2S)$ process at			
$\sqrt{s} = 4.780$ GeV.			$\sqrt{s}=4.840~{ m GeV}.$			

$\sqrt{s} =$	4.780	GeV.		

$ ext{Cuts} \; [\sqrt{s} = 4.914 \; ext{GeV}]$	Events	Efficiency [%]	${\rm Cuts}\;[\sqrt{s}=4.946\;{\rm GeV}]$	Events	Efficiency [%]
Total Tracks	300000	100	Total Tracks	300000	100
Fiducial	259691	86.56	Fiducial	260176	86.73
Kinetic PID	217161	72.39	Kinetic PID	218211	72.74
5 Trks Events - Kalman Fit $1\mathrm{C}$	42435	14.15	$5~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	42208	14.07
$6~{\rm Trks}$ Events - Kalman Fit $1{\rm C}$	102950	34.32	$6~{\rm Trks}$ Events - Kalman Fit $6{\rm C}$	104045	34.68
5&6 Trks Events	145385	48.46	5&6 Trks Events	146253	48.75
Table 41: Cut-flow for the $e^+e^- \rightarrow$			Table 42: Cut-flow for the $e^+e^- \rightarrow$		
$\pi^{\mp} Z_c(4430)^{\pm} \rightarrow \pi^+ \pi^- \psi(2S)$ process at			$\pi^{\mp} Z_c(4430)^{\pm} \rightarrow \pi^+ \pi^- \psi(2S)$ process at		
$\sqrt{s}=4.914~{ m GeV}.$			$\sqrt{s}=4.946~{ m GeV}.$		

BESIII Physics and Software Meeting - June 2025

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

$M(\pi \pm \psi(2S))$ Comparison

