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Decay Channel in Analysis

The scope of my analysis is to discriminate the decay channel:

ψ(2s) → π+π− J/Ψ, J/Ψ → γγγ (1)

The study will use the ≈ 2.3 · 109 events of

ψ(2s) retrieved from the BESIII experiment

(2009, 2012, 2021).
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Present Measures

The previous measurements of the branching fraction

B(J/ψ → 3γ) are:

• CLEO Collaboration, 2008: (1.2 ± 0.3 ± 0.2) × 10−5

• BESIII, 2013: (11.3 ± 1.8 ± 2.0) × 10−6

( BESIII preceding analysis used only the 2009 datas)

The branching fraction theorized using Lattice QCD (2020) is:

• (1.614 ± 0.016 ± 0.261) × 10−5 with a ≃ 0.085 fm;

• (1.809 ± 0.051 ± 0.295) × 10−5 with a ≃ 0.067 fm;

where a is the lattice spacing used in the simulation.
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Why do we study the process?

There are two main reasons why this analysis is interesting:

1. We have a much larger dataset; so the process can be

measured with much higher precision (in order to build a

complete picture of the decay of J/ψ);

2. In particular for the process J/ψ → 3γ, we want to verify the

NRQCD predictions with higher precision while also confirm

the latter lattice QCD calculations;

3. In this energy region glueballs are predicted to exist, our

analysis can therefore help narrow down the phase space

where glueball contributions might still be hiding.
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Analysis Overview

The analysis revolve around the recognition of the J/ψ events,

in order to do so we can recognize the following steps:

1. Selection of the J/ψ events using the π+π− tracks as a

recoil of Ψ(2s);

2. Selection of the J/ψ → n · γ decays.

3. Selection of pure 3γ events through the elimination of the

intermediate particles events.

NOTICE: The dataset used in today presentation is the Inclusive

Monte Carlo dataset based only on the 2021 datas.
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Fit of π+π− over the J/ψ mass

Figure 1: Fit of the Ψ(2S) using the π+π− mass.

We selected the best pion candidates for the J/ψ mass

reconstruction optimizing this fit.
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Recognition of the J/ψ events.

Fitting the J/ψ mass using the π+π− tracks we were able to

impose a cut to the combined mass (in order to reject every event

that is not a J/ψ event):

3.092GeV/c2 ≤ mππ ≤ 3.101GeV/c2

.
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γ’s events selection

The first selection of γ’s is composed by some fiducial cuts that

are typical to gamma signals.

• Barrel cuts:

rejected if: | cos(θ)| < 0.80 ∧ Eγ ≤ 0.025GeV

• Endcaps cuts:

rejected if: 0.86 < | cos(θ)| < 0.92 ∧ Eγ ≤ 0.05GeV

• Timing cut:

0 ns ≤ t ≤ 700 ns

In our case we saved only the events that presented at least three

good candidates.
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Kalman Fit of γ signals

The selection of the neutral particles that best reproduce the J/ψ

is done using a Kalman Fit.

⇒ The fit is done using: 3 γ tracks and the π+π− tracks selected

before.

⇒ The only constraint is to compose the mass of the Ψ(2s).

The Kalman fit produced a cut based of the χ2, each event is

considered good if:

χ2 ≤ 45 ∧ χ2 ̸= 0 .
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Kalman Fit optimization

Figure 2: The optimization of this cut had been done by maximizing the

significance S/
√
S + B. In this graphic each step correspond to 2 unit of

χ2.
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Intermediate Particles Events Rejection

The principal problem of this type of process is the presence of

many intermediate events that can produce at least 3 γ’s. Two

essential tools that can be used to recognize this events are:

Topology studies and Dalitz Plots.
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Topology table

Figure 3: Table of topology showing the 9 channels with higher count.

The dataset used is the Inclusive Monte Carlo one after the Kalman

selection.

15



Dalitz plot of Signal vs Inclusive MC
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Figure 4: Here you can see a comparison of the Dalitz Plots of the

combined mass γ1γ3 vs γ2γ3. On the left you can see a pure signal of

3γ while on the right we have the inclusive Monte Carlo; both are

produced with a cut dataset (fiducial cuts + Kalman Fit).
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Fit of resonances

From both the Topology and the Dalitz plot we see clearly that are

present various resonances, the three most present are also the

ones that was easiest to remove:

η, η′, π0.

To do so we did a fit of the masses obtainable combining γγ and

we fitted them over the mass of the three particles using a sum of

a Breit-Wigner and a Crystal ball.
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Fit of Backgrounds
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Figure 5: Data from an MC of each signal 18



Optimization of phase space cut

Found the FWHM of each fit, we used it to impose a cut,

optimized using the significance. The cuts fixed are:

• Resonance η:

0.5103GeV/c2 ≤ massγγ ≤ 0.5854GeV/c2;

• Resonance η′:

0.9277GeV/c2 ≤ massγγ ≤ 0.9878GeV/c2;

• Resonance π0:

0.1149GeV/c2 ≤ massγγ ≤ 0.1550GeV/c2.

To reduce the presence of multiple π0, we decided to include an

additional Kalman fit made only when we have more than 3γ, and

rejected each event that contained a fitted combined mass γγ

inside the π0 mass interval.
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Resume of Cuts

Here you can see the number of events saved after each cut:

Cut Counts

Total Events Analyzed 2.30 · 109

Fiducial cuts for charged tracks 2.15 · 109

At least 3 good γ tracks 1.64 · 109

Good Charged Tracks 6.35 · 108

Vertex Fit 6.34 · 108

J/ψ Events as π+π− recoil 3.99 · 107

Kalman Fit with 3γ tracks 7.66 · 104

Resonances Cut 1.30 · 104

Kalman fit of pions 1.12 · 104
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Resume of Cuts: Efficiency

Cut Efficiency

Total Events Analyzed 100,00%

Fiducial cuts for charged tracks 72,12%

At least 3 good γ tracks 48,20%

Good Charged Tracks 18,48%

Vertex Fit 18,45%

J/ψ Events as π+π− recoil 15,95%

Kalman Fit with 3γ tracks 12,89%

Resonances Cut 11,31%

Kalman fit of pions 11,25%

Table 1: Here is shown the efficiency of each cut over a sample of

300000 events of signal simulated.
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State of the Measurement

At the state of the art, using classical methods, We were able to

cut out a dataset containing the following tracks:

Figure 6: Topology showing the 6 channels with the most events present

in the MC dataset.
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Backgrounds still to remove

As we can see, we have a persistent background of π0π0 events

since they product a very similar signal to the one we are looking

for. The backgrounds still present at this point are: f0, f2, f4 and

π0π0.
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Figure 7: On the left, the Dalitz plot of the γγγ signal, on the right the

Dalitz plot of the π0π0 background.
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Why to use Machine Learning?

The past analysis took advantage of a partial wave analysis, we

would like to avoid that by using Machine Learning methods.

In order to do so I tried to compare two different approaches:

• Boosted Decision Trees (BDT): a multivariate method that

uses decision trees to classify events;

• Multi-Layer Perceptron (MLP): a neural network that uses

multiple layers of neurons.
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Preparation of the Dataset

I chose to use the TMVA package of the ROOT framework, which

is a powerful tool for Machine Learning in High Energy Physics.

To train the Machine Learning algorithms I retrieved a MC dataset

for each of the 6 channels:

• Backgrounds: π0π0γ, f4(2050)γ, f2(1270)γ, f0(1710)γ, ηγ;

• Signal: γγγ.

To each one of the channels has been assigned a weight based on

the number of events counted in the topology. This is necessary to

”normalize” the datasets that being created singularly have a

different number of events with respect to the inclusive MC

dataset.
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variables used for the training

The variables used for the training are:

• mJ/ψ(rec)

mJ/ψ(Fit)
;

• χ2 · nGoodGammas where χ
2 is for the fit of J/ψ mass.;

• E (J/ψ)rec − E (π+)− E (π−);

• invariant masses of γγ pairs: mγ1γ3 , mγ2γ3 ;

• (θ1 + θ2 + θ3)/3;

To which has been applied a Decorrelation method to reduce the

correlation between the variables.

In my case I chose to split in half the dataset, between the

training and the testing set.
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Correlation Matrices

Figure 8: On the left, the correlation matrix of the background channels,

on the right the correlation matrix of the signal channel.
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Boosted Decision Trees

The Boosted Decision Trees (BDT) is a multivariate method that

uses decision trees to classify events. It works by creating a series

of decision trees that are trained on the dataset, each tree is

trained on the residuals of the previous tree. The training is done

using the following parameters:

• Boosting Type: AdaBoost;

• Number of Trees: 500;

• Maximum Depth: 3;

• Minimum Number of Events in Leaf Node: 2, 5%;

• Learning Rate: 0.5.

NB: the BDT uses also the option Use Bagging that allows to

use a random subset of the dataset for each tree.
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Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a neural network that uses

multiple layers of neurons to classify events. The parameters used

for the training are:

• Number of Layers: 1;

• Number of Neurons per Layer: same as nvar = 6;

• Activation Function: Tanh;

• Estimator Type: Mean Square Error;

• Training Method: Back Propagation;

• Cycles: 700
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Training results

Both methods gives us a score that evaluate the event classifying

it as signal or background. It is very difficult to obtain a perfect

separation so the discrimination is done by setting a threshold

that separate at best the two classes.

Figure 9: On the left, the separation using the Boosted Decision Trees,

on the right the separation using the Multi-Layer Perceptron.
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Roc Curve

The Roc Curve is a graphical representation of the performance of

a binary classifier. One of the parameter to evaluate how good is a

classifier is the Area Under the Curve (AUC), which is the

integral of this curve.
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Results

The results of the training are similar for both methods, and the

AUC is around 0.89 for both methods.

I tried to apply the trained algorithms to the Inclusive MC and the

results are quite good. I tried three different methods:

• a cut on BDT of: scoreBDT > 0.02;

• a cut on MLP of scoreMLP > 0.76;

• a combined cut of both values.
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REMINDER: State of the Measurement

• Goal: Selection of the J/ψ → 3 · γ decays.

Figure 10: Topology showing the 6 channels with the most events

present in the MC dataset.

35



Topology result of BDT

Figure 11: The 6 channels with the most events using BDT.
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Topology result of MLP

Figure 12: The 6 channels with the most events using MLP.
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Topology result of Combined Method

Figure 13: The 6 channels with the most events using both methods.

38



Comparison of the Fitted J/ψ mass

Figure 14: On the left we have the fitted J/ψ mass of the Inclusive MC

dataset, on the right we have the fitted J/ψ mass after the application of

the TMVA methods.
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Future Goals

• Surely the analysis is still in progress, so the main focus is to

obtain a sharp separation of the Decay channel in analysis,

using the complete dataset.

• The future step would be then to use what we’ve learned in

this analysis as a basis to study the decay channel:

J/ψ → γγγ ,

using the same dataset.

This is more challenging to do due to the absence of strong

tagging given by the π+π−, so the hope is that the TMVA

methods will be useful.

41



Thank you
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BACKUP: Distribution of the input variables

Figure 15: Distribution of the input variables used for the training of the

BDT and MLP.
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BACKUP: Comparison of the J/ψ mass

Figure 16: On the left we have the J/ψ mass of the Inclusive MC

dataset, on the right we have the J/ψ mass after the application of the

TMVA methods.
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BACKUP: Branching fractions of intermediate Processes

The branching fractions for each intermediate decay involved are:

• Br(J/ψ → η′γ)= ( 5.13 ± 0.17 ) × 10−3

• Br(J/ψ → ηγ)= ( 1.104 ± 0.034) × 10−3

• Br(J/ψ → πγ)= ( 3.49 + 0.33 - 0.30 ) × 10−5

• Br(J/ψ → ππγ)= ( 1.15 ± 0.05 ) × 10−3

• Br(J/ψ → f0γ → ππγ)= ( 3.8 ± 0.5 ) × 10−4

• Br(J/ψ → f2γ → ππγ)= ( 1.64 ± 0.12 ) × 10−3

• Br(J/ψ → f4γ → ππγ)= ( 2.7 ± 0.7 ) × 10−3
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BACKUP: f s Dalitz Plots
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Figure 17: Dalitz plot respectively of f0, f2, f4. 46



Discarded Methods: Kalman Fit instead of Cuts

We tried also another way of cutting the dataset, trying to use

Kalman to fit also the resonances. In this way we thought that

could be possible to avoid to cut out of the analysis entire sectors

of the Phase Space. This method produced a worse result than

the cut based one.

Figure 18: On the left we have the fit based topology, on the right we

have the cut based one. As we can see the signal count in the fit version

is halved wrt the cut version.
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Discarded Methods: Kalman Fit of missing Tracks

Since the most difficult background to reject is the π0π0γ one; we

tried to reject it using the an option of the Kalman fit that is the

AddMissTrack() function of Kalman Fit.

In such a way we wanted to test the possibility to have a t least

one missing photon per π0, due to the low energy of γ’s coming

from the decay of a π0.

This method was also discarded because it produced empty dataset

with no good data.
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BACKUP: Boosted Decision Trees

We are now trying to implement a Boosted Decision Tree

(BDT) in the analysis in order to discriminate the Background

events from the signal ones.

BDT is a machine learning method, included in the TMVA class

of ROOT, and is based on the concept of Decision Trees
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BACKUP: Decision Tree

Decision Tree
A decision tree is an algorithm that,

using multiple variables, start by

imposing a condition on one variable

(e.g.: a rectangular cut over the

energy), and verify if that condition

bring to an improvement of the dataset,

each branch than split into a secondary

decision, that can be over the same or

over another variable and so on until an

objective is reached.
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BACKUP: Boosting

The BDT take the concept of decision trees but iterates it by

creating a forest of many small trees (which stops already at the

third/forth branch). In such a way it is possible to evaluate many

different picture of the same condition.

The boosting is given by the fact that, in the training phase, we

give different weights to the trees based on how well that specific

tree divide our dataset. In such a way we create a pattern that can

then be applied to the dataset to separate background and signal
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