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Decay Channel in Analysis

The scope of my analysis is to discriminate the decay channel:

Y(2s) = mra” J/V, J/V - yyy (1)
'
‘LLL,,: 3/ The study will use the ~ 2.3 - 10° events of
; (2s) retrieved from the BESIII experiment
e Y8 € (2009, 2012, 2021).



Present Measures

The previous measurements of the branching fraction
B(J/Y — 37) are:

e CLEO Collaboration, 2008: (1.2 & 0.3 4 0.2) x 10~°
e BESIII, 2013: (11.3 + 1.8 4 2.0) x 107°

( BESIII preceding analysis used only the 2009 datas)
The branching fraction theorized using Lattice QCD (2020) is:

o (1.614 + 0.016 + 0.261) x 105 with a ~ 0.085 fm;
e (1.809 + 0.051 + 0.295) x 1075 with a ~ 0.067 fm;

where a is the lattice spacing used in the simulation.



Why do we study the process?

There are two main reasons why this analysis is interesting:

1. We have a much larger dataset; so the process can be
measured with much higher precision (in order to build a
complete picture of the decay of J/4);

2. In particular for the process J/1) — 3, we want to verify the
NRQCD predictions with higher precision while also confirm
the latter lattice QCD calculations;

3. In this energy region glueballs are predicted to exist, our

analysis can therefore help narrow down the phase space
where glueball contributions might still be hiding.
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Analysis Overview

The analysis revolve around the recognition of the J/v events,
in order to do so we can recognize the following steps:

1. Selection of the J/v) events using the 777~ tracks as a
recoil of W(2s);

2. Selection of the J/v) — n -~ decays.

3. Selection of pure 3+ events through the elimination of the

intermediate particles events.

NOTICE: The dataset used in today presentation is the Inclusive
Monte Carlo dataset based only on the 2021 datas.
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Fit of the W(2S) using the 77~ mass.

We selected the best pion candidates for the J/1) mass
reconstruction optimizing this fit.



Recognition of the events.

Fitting the J/1 mass using the 7+~ tracks we were able to
impose a cut to the combined mass (in order to reject every event
that is not a J/1) event):

3.092GeV/c? < myy < 3.101GeV/c?
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7's events selection

The first selection of s is composed by some fiducial cuts that
are typical to gamma signals.

e Barrel cuts:
rejected if: | cos()] < 0.80 A E, < 0.025GeV
e Endcaps cuts:
rejected if: 0.86 < |cos(f)| < 0.92 A E, < 0.05GeV
e Timing cut:

Ons < t <700ns

In our case we saved only the events that presented at least three
good candidates.
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Kalman Fit of v signals

The selection of the neutral particles that best reproduce the J/v
is done using a Kalman Fit.

= The fit is done using: 3 7 tracks and the 717~ tracks selected
before.

= The only constraint is to compose the mass of the W(2s).

The Kalman fit produced a cut based of the x?, each event is
considered good if:

X2 <45 A x°#£0.
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Kalman Fit optimization
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Figure 2: The optimization of this cut had been done by maximizing the
significance S/+/S + B. In this graphic each step correspond to 2 unit of

X2
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Intermediate Particles Events Rejection

The principal problem of this type of process is the presence of
many intermediate events that can produce at least 3 ¥'s. Two
essential tools that can be used to recognize this events are:
Topology studies and Dalitz Plots.
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Topology table
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Figure 3: Table of topology showing the 9 channels with higher count.
The dataset used is the Inclusive Monte Carlo one after the Kalman
selection.
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Dalitz plot of Signal vs Inclusive MC
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Figure 4: Here you can see a comparison of the Dalitz Plots of the
combined mass 13 vs Y27y3. On the left you can see a pure signal of
3~ while on the right we have the inclusive Monte Carlo; both are
produced with a cut dataset (fiducial cuts + Kalman Fit).
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Fit of resonances

From both the Topology and the Dalitz plot we see clearly that are
present various resonances, the three most present are also the

ones that was easiest to remove:
/ 0
n, n, m.

To do so we did a fit of the masses obtainable combining vy~ and
we fitted them over the mass of the three particles using a sum of

a Breit-Wigner and a Crystal ball.
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Fit of Backgrounds
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Figure 5: Data from an MC of each signal 18



Optimization of phase space cut

Found the FWHM of each fit, we used it to impose a cut,

optimized using the significance. The cuts fixed are:

e Resonance 7:
0.5103 GeV/c?
e Resonance 7/':

0.9277 GeV/c? < mass,, < 0.9878 GeV/c?;
0.

IA

mass,, < 0.5854 GeV /c?;

e Resonance 7

0.1149GeV/c? < mass,, < 0.1550 GeV /2.

To reduce the presence of multiple 79, we decided to include an
additional Kalman fit made only when we have more than 3+, and
rejected each event that contained a fitted combined mass vy
inside the 70 mass interval.
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Resume of Cuts

Here you can see the number of events saved after each cut:

’ Cut ‘ Counts ‘
Total Events Analyzed 2.30 - 10°
Fiducial cuts for charged tracks | 2.15 - 10°
At least 3 good ~ tracks 1.64 - 10°
Good Charged Tracks 6.35 - 108
Vertex Fit 6.34 - 108

J/1 Events as 77~ recoil | 3.99-107
Kalman Fit with 3 tracks 7.66 - 10*
Resonances Cut 1.30 - 10*
Kalman fit of pions 1.12-10%
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Resume of Cuts: Efficiency

‘ Cut ‘ Efficiency ‘
Total Events Analyzed 100,00%
Fiducial cuts for charged tracks | 72,12%
At least 3 good ~ tracks 48,20%
Good Charged Tracks 18,48%
Vertex Fit 18,45%
J/v Events as 771~ recoil 15,95%
Kalman Fit with 3~ tracks 12,89%
Resonances Cut 11,31%
Kalman fit of pions 11,25%

Table 1: Here is shown the efficiency of each cut over a sample of
300000 events of signal simulated.
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State of the Measurement

At the state of the art, using classical methods, We were able to
cut out a dataset containing the following tracks:

decay tree

rowNo (decay initial-final states) iDeyTr  nEtr  nCEtr
1 ?;i’:::;({{ i.’f”‘,lj/w L) -y 4 3161 3161
2 E’bi”;::;(‘{_{ f";j_lJ{y L) = fa(2050), fa(2050) — =°x” 2 2074 5235
3 ?mHi:Tu;i{L“-r/wh) 1T, 1270 5 7 5 1397 6632
1 ?u__,:::;{/: WJ)/ v 11019 7651
5 ?b%iiﬁ;{fiﬂj/j) = fo(1710)y, fo(1710) = 7x° 3 879 8530
6 ?w’_-,::i{/:wj)/ v = 7 843 9373

Figure 6: Topology showing the 6 channels with the most events present
in the MC dataset.
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Backgrounds still to remove

As we can see, we have a persistent background of 707

events
since they product a very similar signal to the one we are looking

for. The backgrounds still present at this point are: fy, f, f4 and
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Figure 7: On the left, the Dalitz plot of the v+ signal, on the right the
Dalitz plot of the 7%7° background.
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Why to use Machine Learning?

The past analysis took advantage of a partial wave analysis, we
would like to avoid that by using Machine Learning methods.

In order to do so | tried to compare two different approaches:

e Boosted Decision Trees (BDT): a multivariate method that
uses decision trees to classify events;

e Multi-Layer Perceptron (MLP): a neural network that uses
multiple layers of neurons.
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Preparation of the Dataset

| chose to use the TMVA package of the ROOT framework, which
is a powerful tool for Machine Learning in High Energy Physics.

To train the Machine Learning algorithms | retrieved a MC dataset
for each of the 6 channels:

e Backgrounds: 7970, £(2050)y, £(1270)y, f(1710)y, nv;
e Signal: vy7.

To each one of the channels has been assigned a weight based on
the number of events counted in the topology. This is necessary to
"normalize” the datasets that being created singularly have a
different number of events with respect to the inclusive MC
dataset.
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variables used for the training

The variables used for the training are:

M/ (rec) .
my/y(Fit) '

® X2 NGoodGammas Where x2 is for the fit of J/1 mass;
o E(J/Y)rec — E(7%) — E(77);
e invariant masses of vy pairs: my,;, My,ys;

(91 + 6> + 93)/3;

To which has been applied a Decorrelation method to reduce the

correlation between the variables.

In my case | chose to split in half the dataset, between the
training and the testing set.
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on the right the correlation matrix of the signal channel.
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Boosted Decision Trees

The Boosted Decision Trees (BDT) is a multivariate method that
uses decision trees to classify events. It works by creating a series
of decision trees that are trained on the dataset, each tree is
trained on the residuals of the previous tree. The training is done
using the following parameters:

e Boosting Type: AdaBoost;

e Number of Trees: 500;

e Maximum Depth: 3;

e Minimum Number of Events in Leaf Node: 2,5%;

e Learning Rate: 0.5.

NB: the BDT uses also the option Use Bagging that allows to
use a random subset of the dataset for each tree.
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Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a neural network that uses
multiple layers of neurons to classify events. The parameters used

for the training are:

e Number of Layers: 1;
e Number of Neurons per Layer: same as n,,, = 6;

Activation Function: Tanh;

Estimator Type: Mean Square Error;

Training Method: Back Propagation;
Cycles: 700
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Training results

Both methods gives us a score that evaluate the event classifying
it as signal or background. It is very difficult to obtain a perfect
separation so the discrimination is done by setting a threshold

that separate at best the two classes.
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Figure 9: On the left, the separation using the Boosted Decision Trees,

on the right the separation using the Multi-Layer Perceptron.
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Roc Curve

The Roc Curve is a graphical representation of the performance of

a binary classifier. One of the parameter to evaluate how good is a
classifier is the Area Under the Curve (AUC), which is the

integral of this curve.
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The results of the training are similar for both methods, and the
AUC is around 0.89 for both methods.

| tried to apply the trained algorithms to the Inclusive MC and the
results are quite good. | tried three different methods:

e a cut on BDT of: scoregpT > 0.02;
e a cut on MLP of scorep; p > 0.76;

e a combined cut of both values.
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REMINDER: State of the Measurement

e Goal: Selection of the J/1¢) — 3 -~ decays.
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Figure 10: Topology showing the 6 channels with the most events
present in the MC dataset.

85



Topology result of BDT
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Figure 11: The 6 channels with the most events using BDT.
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Topology result of MLP
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Figure 12: The 6 channels with the most events using MLP.
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Topology result of Combined Method
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Figure 13: The 6 channels with the most events using both methods.
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Comparison of the Fitted J/¢) mass
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Figure 14: On the left we have the fitted J/1) mass of the Inclusive MC
dataset, on the right we have the fitted J/1¢ mass after the application of
the TMVA methods.
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Future Goals

e Surely the analysis is still in progress, so the main focus is to
obtain a sharp separation of the Decay channel in analysis,
using the complete dataset.

e The future step would be then to use what we've learned in
this analysis as a basis to study the decay channel:

J/Y = vy,

using the same dataset.
This is more challenging to do due to the absence of strong
tagging given by the 777, so the hope is that the TMVA
methods will be useful.
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BACKUP: Distribution of the input variables
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Figure 15: Distribution of the input variables used for the training of the
BDT and MLP.
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BACKUP: Comparison of the
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Figure 16: On the left we have the J/1 mass of the Inclusive MC
dataset, on the right we have the J/v¢ mass after the application of the
TMVA methods.
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BACKUP: Branching fractions of intermediate Processes

The branching fractions for each intermediate decay involved are:

Br(J/v — n'y)= (5.13 £ 0.17 ) x 1073

e Br(J/v — ny)= (1.104 £ 0.034) x 1073

e Br(J/¢) — my)=(3.49 +033-030) x 107°
e Br(J/y — mry)=(1.15 £ 0.05 ) x 1073

o Br(J/v) — foy — mny)= (3.8 £05) x 10~*

e Br(J/¢y — fy — 7my)= (1.64 £ 0.12 ) x 10~3
o Br(J/vp — fyy — mry)= (2.7 £ 07 ) x 1073
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BACKUP: fs Dalitz Plots
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Figure 17: Dalitz plot respectively of fy, f, f4.
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Discarded Methods: Kalman Fit instead of Cuts

We tried also another way of cutting the dataset, trying to use
Kalman to fit also the resonances. In this way we thought that
could be possible to avoid to cut out of the analysis entire sectors
of the Phase Space. This method produced a worse result than
the cut based one.

Figure 18: On the left we have the fit based topology, on the right we
have the cut based one. As we can see the signal count in the fit version
is halved wrt the cut version.
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Discarded Methods: Kalman Fit of missing Tracks

Since the most difficult background to reject is the 7%7%y one; we
tried to reject it using the an option of the Kalman fit that is the
AddMissTrack() function of Kalman Fit.

In such a way we wanted to test the possibility to have a t least
one missing photon per 7%, due to the low energy of 7's coming

from the decay of a 7°.

This method was also discarded because it produced empty dataset
with no good data.
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BACKUP: Boosted Decision Trees

We are now trying to implement a Boosted Decision Tree

(BDT) in the analysis in order to discriminate the Background
events from the signal ones.

BDT is a machine learning method, included in the TMVA class
of ROOT, and is based on the concept of Decision Trees
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BACKUP: Decision Tree

Decision Tree
A decision tree is an algorithm that,

using multiple variables, start by
imposing a condition on one variable
(e.g.: a rectangular cut over the
energy), and verify if that condition
bring to an improvement of the dataset,
each branch than split into a secondary
decision, that can be over the same or

over another variable and so on until an

objective is reached.
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BACKUP: Boosting

The BDT take the concept of decision trees but iterates it by
creating a forest of many small trees (which stops already at the
third /forth branch). In such a way it is possible to evaluate many

different picture of the same condition.

The boosting is given by the fact that, in the training phase, we
give different weights to the trees based on how well that specific
tree divide our dataset. In such a way we create a pattern that can
then be applied to the dataset to separate background and signal
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