Assisted Photon Systems – APS project

Antonio Cammi

Consiglio di Sezione - 10/07/2025

Why photons?

Photonuclear reactions are available channels for inducing

Light fission Excited state De-excitation fragment Nucleus Nucleus **Fission process** Yd Fissionable nucleus Yp mm nd Gamma rays mm **Heavy** fission Photons | fragment Knockout Other $E_{\rm exc}$ Atomic orbitals nucleon particles E_{gnd} Other particles

Transmutations

Fissions

Other particles

Yd

nd

Photofission

Aim of this analysis: to evaluate the principles and capabilities of minor actinide transmutation using photon sources

Photon Sources for Transmutation

Bremsstrahlung

- Production: Electrons (40 MeV) decelerated in high-Z target
- Continuous energy spectrum (0-40 MeV)
- Simple and cost-effective implementation
- Well-established technology for industrial applications

Laser Compton Backscattering (LCB)

- Production: High-energy electrons collide with laser photons
- Narrow, tunable photon spectrum (quasi-monoenergetic)
- Challenging implementation but offers good energy precision
 Synchrotron
- Requires large electron facility
- High photon fluxes available
- Low energy consumption and excellent beam control

Why photons?

4

Transmutation channels

Case study description

FLUKA simulation

- Systems A, B, C simulated with 10⁷ primary particles;
- Photon and neutron energy flux distributions calculated within the spent fuel sample;
- Flux energy spectrum shape was critical for our analysis;
- Flux intensity varied from 10^{17} to 10^{20} γ/cm^2 s to evaluate flux-dependent effects.

Flux shape

Concentration evolution

$$\frac{dN_{i}(t)}{dt} = \underbrace{-\lambda_{i}N_{i}(t)}_{\text{destruction by decay}} + \sum_{j \neq i} \underbrace{\lambda_{j \to i}N_{j}(t)}_{\text{creation by decay}} \\ \underbrace{-N_{i}(t)\int \left[\sigma_{\gamma,f}^{i}(E) + \sigma_{\gamma,n}^{i}(E) + \sigma_{\gamma,2n}^{i}(E)\right]\Phi_{\gamma}(E)\,dE}_{\text{destruction by photon capture}} \\ + \sum_{j \neq i} \underbrace{N_{j}(t)\int \left[\sigma_{\gamma,n}^{j \to i}(E) + \sigma_{\gamma,2n}^{j \to i}(E)\right]\Phi_{\gamma}(E)\,dE}_{\text{creation by photon reactions}} \\ \underbrace{-N_{i}(t)\int \left[\sigma_{n,f}^{i}(E) + \sigma_{n,\gamma}^{i}(E) + \sigma_{n,2n}^{i}(E)\right]\Phi_{n}(E)\,dE}_{\text{destruction by neutron capture}} \\ + \sum_{j \neq i} \underbrace{N_{j}(t)\int \left[\sigma_{n,\gamma}^{j \to i}(E) + \sigma_{n,2n}^{j \to i}(E)\right]\Phi_{n}(E)\,dE}_{\text{creation by neutron capture}} \\ + \sum_{j \neq i} \underbrace{N_{j}(t)\int \left[\sigma_{n,\gamma}^{j \to i}(E) + \sigma_{n,2n}^{j \to i}(E)\right]\Phi_{n}(E)\,dE}_{\text{creation by neutron reactions}}$$

- Fluxes and cross sections were used as input for solving the Bateman equation for the 53 nuclides involved in the transmutation chain;
- A time frame of 100 years was considered;
- Along with the concentration, also the system radiotoxicity was calculated.

Results (1)

- Solid line = isotopes present in the initial condition
- Dashed line = isotopes produced during the treatment process

Results (2)

10

Results (3)

11

Assisted Photon Systems – APS

Power Generation from Spent Fuel: Photoneutron Source to Start Up a Subcritical Design

Photon source

Key features:

source strength (S) and consumption (C)

S = 8.8×1017γ/s C ~ 0.5 MW

Life of a fuel assembly

Minor actinides concentrations of the Takahama reactor

Test cases (1)

Test cases (2)

Photons distribution

Neutrons distribution

Preliminary results

Thank you for your attention!