

Compressed Baryonic Matter: CBM @ FAIR

Outline

- CBM / FAIR status
- CBM detector concept
- Observables at SIS100
 - Hypernuclei
 - (Multi) strange baryon production
 - Flow
- Detector performance

GSI / FAIR

SIS100/300: **Proposal** 2003 **Start** 2018++ E_{beam} < 14 / 45 AGeV (Ca) < 11 / 35 AGeV (Au)

Messengers from the dense fireball: CBM at SIS100

UrQMD transport calculation Au+Au 10.7 A GeV

 $ho
ightarrow e^+e^-, \mu^+\mu^-$

 $), \in \bar{}, \wedge \bar{}$

 $\rho \rightarrow e^+e^-, \mu^+\mu^-$

p, Λ, Ξ⁺, Ω⁺, J/ψ

 \downarrow $\rho \rightarrow e^+e^-, \mu^+\mu^-$

resonance decays

π, Κ, Λ, ...

CBM – detector concept

Different detector setups for muon & electron measurements:

1) Muon – setup

0) Core elements

dipole magnet STS – silicon tracking system **PSD** – projectile spectator detector DAQ – data acquisition FLES – first level event selection

1) Muon setup

MUCH – Muon detection system (active absorber)

TRD – tracking station

TOF – MRPC time-of-flight detector

2) Electron/Hadron setup

- **MVD** Micro vertex detector
- TRD Transistion radidation detector
- **TOF MRPC** time-of-flight detector
- **ECAL** Electromagnetic calorimeter

Concept for high rates (up to 10 MHz Au+Au reactions): Self triggered detectors and free running DAQ with sufficient bandwidth!

ASY-EOS 2012, Siracusa, September 12

CBM - collaboration

China:

Tsinghua Univ., Beijing CCNU Wuhan USTC Hefei

Croatia:

University of Split RBI, Zagreb

Cyprus:

Nikosia Univ.

Czech Republic:

CAS, Rez Techn. Univ. Prague <u>France:</u> IPHC Strasbourg

Germany:

Univ. Gießen Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Münster FZ Rossendorf GSI Darmstadt Univ. Tübingen Univ. Wuppertal

<u>Hungaria:</u>

KFKI Budapest Eötvös Univ. Budapest India:

Aligarh Muslim Univ., Aligarh IOP Bhubaneswar Panjab Univ., Chandigarh Gauhati Univ., Guwahati Univ. Rajasthan, Jaipur Univ. Jammu, Jammu IIT Kharagpur SAHA Kolkata Univ Calcutta, Kolkata VECC Kolkata Univ. Kashmir, Srinagar Banaras Hindu Univ., Varanasi

<u>Korea:</u>

Pusan National Univ.

Poland:

Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Nucl. Phys. Inst. Krakow

Romania:

NIPNE Bucharest Bucharest University

Russia:

IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst. Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U.

Ukraine:

INR, Kiev Shevchenko Univ. , Kiev

lerrmann, PI, Uni-HD

FAIR: Modularized Start Version

Modules 0 – 3: Start of construction 2011, completion until 2017 Modules 4-6: Start and completion of construction not fixed

FAIR construction site

Yields and Thermal Model

C. Blume, J. Phys. G 31 (2005) 57 ŝ **CBM100** π 10³ π+ K⁺ 10² ĸ 10 Ē ¢ Λ **(× 0.02)** 1 E Ξ⁻ (× 0.1) $\Omega^{-}+\overline{\Omega}^{+}$ (× 0.2) 10- $\overline{\Lambda}$ (× 0.02) $\overline{\Xi}^{+}$ (× 0.02) 10⁻² 10⁻³ 10² 10 1 $\sqrt{s_{_{NN}}}$ (GeV)

A. Andronic et al., Phys. Lett. B 673 (2009). (MeV) 225 1st order QGP LQCD crossover 200 critical point \vdash 175 150 125 hadrons 100 Data (fits) 75 dN/dy O 4π 50 hadron gas $n_{b}^{=}=0.12 \text{ fm}^{-3}$ 25 $\tilde{\epsilon}$ =500 MeV/fm³ 0 200 400 600 800 1000 1200 0 $\mu_{\text{b}} \, (\text{MeV})$

Hadron Detektor FOPI @ GSI Darmstadt

A. Andronic, R. Averbeck, Z. Basrak, N. Bastid, M.L. Benabderramahne, M.Berger, P. Bühler, R. Caplar, M. Cargnelli, M. Ciobanu, P. Crochet, I. Deppner, P. Dupieux, M. Dzelalija, L. Fabbietti, J. Fruehauf, F. Fu, P. Gasik, O. Hartmann, N. Herrmann, K.D. Hildenbrand, B. Hong, T.I. Kang, J. Keskemeti, Y.J. Kim, M. Kis, M. Kirejczyk, P. Koczon, M. Korolija, R. Kotte, A. Lebedev, K.S. Lee, Y. Leifels, A. LeFevre, P.-A. Loizeau, X. Lopez, J. Marton, M. Merschmeyer, R. Muenzer, M. Petrovici, K. Piasecki, F. Rami, V. Ramillien, A. Reischl, W. Reisdorf, M.S. Ryu, A. Schüttauf, Z. Seres, B. Sikora, K.S. Sim, V. Simion, K. Siwek-Wilczynska, K. Suzuki, Z. Tyminski, K. Wisniewski, Z. Xiao, H.S. Xu, J.T. Yang, I. Yushmanov, A. Zhilin, Y. Zhang, V. Zinyuk, J. Zmeskal

IPNE Bucharest, Romania CRIP/KFKI Budapest, Hungary LPC Clermont-Ferrand, France GSI Darmstadt, Germany FZ Rossendorf, Germany Univ. of Warsaw, Poland ITEP Moscow, Russia Kurchatov Institute Moscow, Russia Korea University, Seoul, Korea IReS Strasbourg, France Univ. of Heidelberg, Germany RBI Zagreb, Croatia + SMI Vienna, Austria

+ TUM Munich, Germany

... still running ... (1990 – 2012) ...

Scientific Program:

Equation – of – State

In - medium – modifications of strange hadrons

Search for bound states with strangeness

Phases of QCD?

ASY-EOS 2012, Siracusa, September 12

HADES: Sub-threshold Ξ^{-} production

Ar+KCI reactions at 1.76A GeV

- Ξ^{-} yield by appr. factor 25 higher than thermal yield
- strangeness exchange reactions like

 $_{\Lambda}t \rightarrow ^{3}He + \pi^{-}$

ASY-EOS 2012, Siracusa, September 12

³He - identification

essential for

Hypernuclei production in Ni+Ni (S325e)

Measurement time: FOPI: 10 days \rightarrow CBM: 10 sec !

Hypertriton production in Ni+Ni (S325e)

Particle yields and production mechanism

Ni + Ni @ 1.93 AGeV (S325e)

Efficiency corrected yield ratios:

	Region A	Region B	Thermal model (T=60MeV, µ _B =783 MeV)
_∧ t/³He	0.029 +/- 0.002	<0.003 +/- 0.002	0.002
t/ ³ He	1.45 +/- 0.01	0.93 +/- 0.01	1.1
Λ/d	0.0046 +/- 0.0005	0.0138 +/- 0.0005	0.031

Particle ratios incompatible with

- Thermal model
- Naïve coalescence hypothesis

KN – interaction

KN – interaction is attractive at finite densities, but strength (depth of potential) is unclearExperimental signatures:flow of kaonsbound baryonic states

Motivation of high density kaonic clusters

NN- interaction: Repulsive at small distances

Pauli-blocking on quark level

ppK⁻ - molecule: $K^{-} = (u,s)$, no u,d quark No Pauli repulsion Strong attraction between uu and dd

Analogy to H₂⁺ - molecule and covalent binding

Y. Akaishi, T. Yamazaki,

Phys.Rev.C65, 044005 (2002) T.Yamazaki and Y. Akaishi, Phys.Lett.B535, (2002)

Λp – correlation

MeV

Λp – Interpretation?

Cusp (?) in pp – reactions:

Fig. 6. Inclusive missing mass spectra for $pp \rightarrow K^+X$ at 2.7 GeV incident energy. The kaon laboratory scattering angles are 12.6°, 16.1°, 20.0° and 23.5°. The bins are 1.5 MeV wide. The resolutions (FWHM) are approximately 3 MeV (12.6°), 4 MeV (16.1°), 3.5 MeV (20.0°) and 5 MeV (23.5°). The dashed lines show the 3-body phase-space to which a fitted gaussian distribution centered at 2136 MeV was added at 20.0°. This peak is also shown separately.

COSY TOF @ 2.95 GeV/c

Can cusp survive in HI – final state? Final state interaction (FSI)? Are there cusps or FSI in Λ d final state?

Peak position consistent with p+p scattering data: M=2.315 ± 0.004GeV Suggested interpretation: D, (q4 x q2 structure)

A.T.M. Aerts and C.B. Dover, Phys. Lett. B146, 95 (1984) **Object also seen in K⁻ + d** $\rightarrow \Lambda p\pi^{-}$ (O. Braun et al., NPB 124,45 (1977)) **Interpretation:** ΣN – bound state H(2129)

Λd – correlations

K. Wisniewski

N. Herrmann, EXA2005

Improvement (2003→2008): PID

FOPI 2003 and 2008 data are consistent, Inconsistent with cusp ($\Sigma - d$ – threshold) and FINUDA.

А

Standard hadrons

CBM @ SIS100

- All components designed to run without trigger at 10 MHz interaction rate (free streaming readout).
- **RPCs at small angles are exposed to rates R=20 kHz/cm².**

Kaon acceptance for CBM @ SIS100

URQMD acceptance simulations: 4AGeV

8AGeV

Charged Kaon acceptance with 3σ – TOF separation:

E _{lab} (AGeV)	4	6	8
3	77%	64%	55%

Coverage of low – p_t range of the spectrum ! K⁺ - multiplicity selection (FLES) possible \rightarrow enrichment of strangeness in interaction region. However: Limited p_t acceptance at midrapidity (e.g. for $v_2(p_t)$) for $E_{beam} < 4$ AGeV

Kaon/Lambda sideflow at 6AGeV

Data: P. Chung et al. (E895), PRL85, 940 (2000)

Theo: S. Pal et al., Phys.Rev.C62:061903, (2000)

Very strong kaon antiflow signal, as big as proton flow (opposite sign)!

Excitation function of flow variables

P. Danielewicz et al. nucl-th/0112006 (2001), Science 298, 1592 (2002)

Mean field effects clearly visible by difference to 'cascade' calculations.
None of the model calculations describes all the available data.
Largest sensitivity to model parameters (EOS) in energy range 2 – 5 AGeV.
Uncertainty in data at 1 GeV/A corresponds to uncertainty in K of 150 MeV.

 $F = \frac{d\langle p_x / A \rangle}{d(y / y_{cm})}$

Detailed model comparison at 1.5 AGeV

Equation – of – state

In the density range accessible at SIS18 SM agrees with many body theory (Dirac Brueckner Hartree Fock)

Inner structure of neutronstars

All EOS with kaon and hyperon condensates are excluded. Stiffening of EOS will occur at densities accessible at SIS100.

F.Weber, LBL, Berkeley Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics IOP Publishing, Bristol, Great Britain, 1999

Flow of charged kaons

Ni+Ni at 1.91 AGeV (S325 + S325e data) σ = 1.5 b (b_{geo}= 7 fm)

Models with FOPI acceptance filter

Potentials with linear density dependence.

At ρ=ρ₀: U_{HSD}(K⁺) +20 MeV U_{HSD}(K⁻) - 50 MeV

K⁺ sideflow much smaller than expectation from model calculations. K⁻ sideflow compatible with zero, in variance with model expectiations. K⁺ - elliptic flow negativ \rightarrow out of plane emission. K⁻ - elliptic flow consistent with zero.

ASY-EOS 2012, Siracusa, September 12

Summary / Conclusion

CBM has a very interesting physics program at SIS100 :

- EOS
- hypernuclei
- strange baryons
- partial restoration of chiral symmetry (vector mesons)
- charm production in pA collisions
- $\rightarrow GSI-report\ 2012\text{--}1\ (\underline{\mathsf{http://www-alt.gsi.de/documents/DOC-2011-Aug-29.html}\).$

Detector development ongoing to achieve interaction rate of 10 MHz (Au + Au @ 25 AGeV).

CBM - TDRs are being prepared

Dec. 2012
Dec. 2012
Dec. 2013

Isospin effect have not been considered so far, suggestions are welcome.

bmb+f - Förderschwerpunkt Hadronen und Kernphysik Großgeräte der physikalischen Grundlagenforschung

X. Lopez et al. (FOPI), Phys. Rev. C 75, 011901(R) (2007)

FIG. 3. (Color online) Experimental ratio $(K^+/K^0)_{\text{Ru}}/(K^+/K^0)_{\text{Zr}}$ (star) and theoretical predictions of the thermal model (cross) and the transport model with three different assumptions on the symmetry energy: NL (circles), NL ρ (squares), and NL $\rho\delta$ (triangles), for two sets of calculations: INM (open symbols) and HIC (full symbols) (see text for more details). Statistic and systematic errors are represented by vertical bars and brackets, respectively.

Difference in production yield might be measurable with CBM.

Experimental errors can be reduced by ~ 100!

Is N/Z equilibration theoretically under control?