

Rare kaon signals from Au+Au collisions at HADES

ASY-EOS Workshop 2012 Siracusa, Italy Katharina Gill for the HADES Collaboration Goethe-Universität Frankfurt

High Acceptance Di-Electron Spectrometer

Probing the Symmetry Energy with HADES

Trautmann W., Wolter H.; Int.J.Mod.Phys. E21 (2012) 1230003

HIC at SIS energies

- Densities: $\rho_{\text{max}} / \rho_0 \cong$ 2-3
- Temperature: T < 100 MeV
- τ~10 fm/c

Access to EOS and E_{sym} with HIC

- Isospin asymmetric system (Au+Au)
- Subthreshold production of kaons
- Measurement of ratio K⁺/K⁰

High Acceptance Di-Electron Spectrometer

- Beams provided by SIS18: p, π, nuclei
- Hadron and lepton identification
- Full azimuthal coverage

Detector components

- **RICH** and **SHOWER** detector for lepton identification
- Multi-wire drift chambers (MDC) with magnetic field for momentum measurement and tracking information
- Time of flight detectors (TOF, RPC) for timing and energy loss information

Upgrade for Au Au Run – RPC System

Resistive Plate Chambers (RPCs)

D. Belver et al . NIM A602(2008) 687, 788 E. Blanco et al. NIM A602(2008) 691 Leading institute: Coimbra, Portugal

+ Data acquisition Update

K⁻ acceptance (nice rapidity coverage!) RPC: $18^{\circ} - 45^{\circ}$

Full-system test results:

- $\sigma_t \leq 100 \text{ ps}$
- $\sigma_x \leq 8 \text{ mm}$
- ε~97%

05.09.2012

Au Au Run @ 1.23 AGeV, April 2012

HADES DAQ performance during AuAu beam time

- 557 hours Au beam on Au target
- (1.2 1.5) x 10⁶ ions per second
- 8 kHz trigger rate
- 200 MByte/s data rate
- 7.3 x 10⁹ events \rightarrow 140 TByte of data
- Beam energy 1.23 AGeV
- Segmented Au target
- Trigger on multiplicity in TOF $\ge 20 \rightarrow b_{max} \approx 9 \text{ fm}$

Analysis based on the ONLINE data \rightarrow

preliminary detector calibration and alignment

Tracking: The Challenge

cyan: all fired MDC wires orange: wires, used by track segment fitter

- Up to 140 charged particles in acceptance
- Double hit probability < 10% for MDCs
- Tracking issue: Wires introduce long range correlations between particle tracks

Expected Kaon Multiplicities

K⁺ Analysis

Particle Identification

Particle identification via

- Velocity distribution (left)
- Energy loss in MDC distribution (right)
- Cut on track quality parameters

• Black lines: β vs. momentum (left) and Bethe-Bloch (right) function

• Cuts (black curves) are choosen to optimize S/B ratio and significance

Mass Spectrum in RPC and TOF Regions

- Blue: all candidates
- Green: additional track quality cut
- Black: additional momentum cut TOF: p < 750 MeV/c, RPC: p < 1000 MeV/c
- Purple: additional dE/dx cut in MDC

Final K⁺ Peak in RPC and TOF

TOF, sector 5

→~ 2100 K⁺/hour → ~ 0.002 K⁺/event (data) Expected in UrQMD 4π : 0.029

 \rightarrow K⁺ reconstruction efficiency \approx 10%

K⁰_s Analysis

• Decay channels:
$$K_{S}^{0} \rightarrow \pi^{+} + \pi^{-}, 69.2\%$$

 $K_{S}^{0} \rightarrow \pi^{0} + \pi^{0}, 30.7\%$

• Reconstruction via first channel \rightarrow combination of identified π^+ and π^-

• Cuts on vertex parameters for identification of π^+ and π^- originate from K⁰ decay

Pion Identification Cuts

Cut on track quality parameters

- $\chi^2_{RK} < 750$
- $0 < \chi^2_{ln}$
- MetaQa < 2.0

Identification via

 Velocity (left) and energy loss in MDC (right) distributions

Online spectra

- |p| < 1000 MeV/c
- m (π⁺) < 300 MeV/c²

Invariant mass of π^+ and π^-

- Invariant mass of mother particle with daughter particles 1 (m₁, p₁) and 2 (m₂, p₂) with relative angle θ_{12} $m_{inv} = \sqrt{(m_1^2 + m_2^2) + 2 \cdot (\sqrt{m_1^2 + (\vec{p}_1 \cdot c^2)} \sqrt{m_2^2 + (\vec{p}_2 \cdot c^2)} - |\vec{p}_1||\vec{p}_2|c^2 \cos \theta_{12})}$
- Invariant mass of π^+ and π^- for K_s^0 candidates (black) and "true" K_s^0 (blue, simulation)

Vertex Cuts

Decay topology

- Distance decay vertex from event vertex (DistX)
- Minimum distance of π Track to event vertex (**DistA**, **DistB**)
- Minimum distance of K⁰_s Track to event vertex (**DistC**)

Invariant Mass after all Vertex Cuts

Invariant mass spectra for combination of $\pi^+\pi^-$ pairs after all vertex cuts for simulation (left) and real data (right)

Invariant Mass after all Vertex Cuts

Invariant mass spectra for combination of $\pi^+\pi^-$ pairs after all vertex cuts for simulation (left) and real data (right)

Invariant Mass after all Vertex Cuts

Rome wasn't built in a day :-)

Invariant mass spectra for combination of $\pi^+\pi^-$ pairs after all vertex cuts for simulation (left) and real data (right)

Summary and Outlook

Summary

- 7.3 x 10⁹ events recorded (April 2012)
- We expect:
 - N_{max} (K⁺) \approx 14 x 10⁶ K⁺ (estimated from real data)
 - N_{max} (K⁰_s) ≈ 2.5 x 10⁶ (estimated from simulated data)
- Better performance after full detector calibration, alignment and optimized track reconstruction

<u>Outlook</u>

- Analysis of lepton pairs and complete (multi-)strange particle production
- ... and of cause ratio of K⁺/K⁰

The HADES Collaboration

Department of Physics, University of Cyprus

Czech Republic:

Nuclear Physics Institute, Academy of Sciences of Czech Republic

France: IPN (UMR 8608), Université Paris Sud

Germany:

GSI, Darmstadt FZ Dresden-Rossendor **Technical University of Darmstadt** IKF, Goethe-Universität Frankfurt II.PI, Justus Liebig Universität Giessen PD E12, Technische Universität München

taly: Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud Istituto Nazionale di Fisica Nucleare, Sezione di Milano

Poland

Smoluchowski Institute of Physics, Jagiellonian University of Cracow

Portugal:

LIP-Laboratório de Instrumentação e Física Experimental de Partículas

Russia:

INR, Russian Academy of Science Joint Institute of Nuclear Research ITEP

Spain:

Departan nio de Física de Particulos I Santiago de Compostela Física Colpuscular, Universe Universit Instituto de Vale

17 institutions > 150 members