

Kaon properties in cold or dense nuclear matter

Ji-Chii Chen, Kirill Lapidus, <u>Laura Fabbietti</u> For the HADES Collaboration

Kaon-Nucleon Potential Experimental Observables K0 in Ar+KCl @ 1.756 AGeV K0 in p+p @ 3.5 GeV K0 in p+Nb @ 3.5 GeV

Densities= 7-10 ρ 0, Radius= 10-13 km

Strangeness in the Form of antiKaons or Hyperon could appear -> EOS would become softer

<u>The potential depth (K-Nucleon, Hyeron-Nucleon) influences the stiffness of the EOS</u>

EOS: Dependency between Pressure and density:

Imposing P(R)=0 (the internal pressure must be compensated by gravity) ->M(R) can be determined

M vs R lines for neutron stars as a function of different EOS.

Ingredients to such Models: ; S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich arXiv:1111.6049v3

B/A= Binding Energy per Baryon Number
ρ₀= saturation density
asym= asymmetry coefficient (32.5 MeV)
K= Kompressibility of nuclear matter
M*= Effective Nucleon mass
K-Nucleon, Hyperon-Nucleon Potential

ПΠ

The Connection of the KN Potential to Neutron Stars $\frac{1}{\mathbf{H}}$

- Kaon condensation in neutron stars? -> extract the K $\mbox{-}$ Nucleus potential to test hypotheses.
- Meanwhile: Neutron stars are TOO HEAVY to contemplate kaon condensate but maybe Hyperons still stand a chance?

We can start with ρ_0 for K⁰s, K⁺, Λ (p+p, p+Nb reactions) Then move to 2-3 ρ_0 for K⁰s, K+, Λ and Ξ (Au+Au, Ag+Ag) P.B. Demorest et al., Nature 467, 1081 (2010)

Heavy Ion Collisions at SIS18

GEMEINSCHAFT

Helmholtz Zentrum: Gesellschaft für Schwerlonen forschung

The HADES Spectrometer

High Acceptance **Di-Electron Spectrometer**:

- High acceptance for dilepton pairs
- Momentum resolution \approx 1-5 %
- Particle identification via dE/dx
- 6.9*10⁸ events in Ar+KCl @ 1.756 AGeV
- 1.2·10⁹ events in p+p @ 3.5 GeV
- 4.2·10⁹ events in p+Nb @ 3.5 GeV

Particle Identification

HADES: Ar+KCl @ 1.756AGeV

KOS in Ar+KCl @ 1.756AGeV

Reduced $m_{\rm T}$ spectra show consistency between K+ and ${\rm K}^{\rm 0}_{\rm S}$

Rapidity Distribution

HADES: Ar+KCl @ 1.756AGeV

No sensitivity to the shape of the distribution! The potential influences the absolute yield but this could vary because of scattering cross-section

Without additional Force

K⁰ Potential HADES: Ar+KCl @ 1.756AGeV

Linear Ansatz

$$U(\alpha) = U_0 + U'\alpha, \quad U_0 \approx 0.8 \, MeV, \quad U' \approx 38 \, MeV^2$$

 α = Parameter α = 1.2 -> U= 46 MeV α = 1.10 -> U = 38.8 MeV

Pt Distributions

HADES: Ar+KCl @ 1.756AGeV

IQMD Model compared to the experimental data Normalization:

b < 6 fm -> corresponds to the experimental trigger Pion spectra reproduced within 15%

HADES, IQMD and HSD

HADES: Ar+KCl @ 1.756AGeV

Hartnack, Oeschler, Leifels, Bratkovskaya, Aichelin Phys. Rep. 510, 4-5, 119 (2012)

HADES, IQMD and HSD

HADES: Ar+KCl @ 1.756AGeV

Hartnack, Oeschler, Leifels, Bratkovskaya, Aichelin Phys. Rep. 510, 4-5, 119 (2012)

KOs Summary

	Ar+KCl - HADES	π ⁻ +A - FOPI	p+A - ANKE
KN potential [MeV]	42.4 ± 3.7	20 ± 5	20 ± 3

Where do the differences come from? Less sensitivity for low Ptin FOPI and ANKE? Different theories?

Study the p+p and p+Nb reactions in HADES to verify the strength of the KN potential

Acceptance & Efficiency Correction

- Monte Carlo simulation of 13 K^0 production channels for p+p @ 3.5 GeV (91% of σ_{tot})
- Angular distribution used for Σ⁺pK⁰ channel

 → measured angular distribution from COSY-TOF
 studies of the same reaction at E_{kin} = 2.26 GeV
- p+Nb: UrQMD simulations

Largest contributions:

Reaction	σ [μb]
$p + p \rightarrow \Sigma^+ + p + K^0$	21.29
$p + p \rightarrow \Lambda + p + \pi^+ + K^0$	18.40
$p + p \rightarrow \Sigma^0 + p + \pi^+ + K^0$	12.38

+ other minor channels

dN/dy in p+p

HADES: p+p @ 3.5 GeV

$$\sigma_{tot}^{\kappa_{s}^{\circ}} = 41.209 \pm 0.509(stat)\mu b \rightarrow \sigma_{tot}^{\kappa_{s}^{\circ}} = 27 \sigma_{tot}^{\kappa_{s}^{\circ}} = 82.418 \pm 1.018(stat)\mu b$$

<u>p+p@3.5GeV</u>: Exp vs GiBUU

 $p + p \rightarrow \Sigma^{+} + p + K^{0} \quad \sigma = 21.29 \ \mu b$ $p + p \rightarrow \Lambda + p + \pi^{+} + K^{0} \quad \sigma = 18.40 \ \mu b$ $p + p \rightarrow \Sigma^{0} + p + \pi^{+} + K^{0} \quad \sigma = 12.38 \ \mu b$

Normalized to the mid-rapidity bin

p+Nb@3.5Gev:Exp vs GiBUU

Sytematic overestimation of the low p_T region-> Effect of the repulsive potential Issue of the KO-Nucleon scattering cross-section: Does this influence the p_T distribution

p+Nb: Rapidity Distribution

GEMEINSCHAFT

HADES: p+Nb @ 3.5 GeV

L

GEMEINSCHAFT

Summary and Outlook

- Ar+KCl : IQMD model used to describe the data
 - a) Pions reproduced within 15%
 - b) $K_{s}^{0} P_{T}$ distributions are compatible with U~40 MeV
- p+p: Pluto Cocktail used to calculate corrections
 GiBUU model used to describe the data
 a) p+p well reproduced: Reference
- p+Nb: GiBUU comparison
 - a) No Potential effects are yet included in the GiBUU code
 - b) K⁰_s Rapidity density distribution depends upon the KN scattering cross-section and probably from the KN potential
 - c) K⁰_s PT distributions are not sensitive to the KN scattering cross-section!

To do: Implement the KN potential in the GiBUU code

Simultaneous Fit of All Channels to 12 exp. p_t-y Distributions

Start parameter for minimization:

Scaling factors ($\sigma_{ch} \cdot f_{norm}(y_{cm})$) used for PLUTO-Exp comparision

Constraints: $p + p \rightarrow \Lambda + p + \pi^+ + K^0 \le p + p \rightarrow \Sigma^+ + p + K^0$

$$p + p \to \Sigma^{0} + p + \pi^{+} + K^{0}$$

$$p + p \to \Lambda + \Delta^{++} + K^{0}$$

$$p + p \to p + n + K^{+} + K^{0}$$

$$p + p \to \Sigma(1385)^{+} + p + K^{0}$$

$$p + p \to \Lambda + n + \pi^{+} + \pi^{+} + K^{0}$$

$$p + p \to \Sigma^{+} + n + \pi^{+} + K^{0}$$

$$p + p \to \Sigma^{+} + n + \pi^{+} + \pi^{0} + K^{0}$$

$$p + p \to \Sigma^{+} + p + \pi^{0} + K^{0}$$

$$p + p \to \Sigma^{-} + p + \pi^{+} + \pi^{-} + K^{0}$$

$$p + p \to \Sigma^{+} + p + \pi^{+} + \pi^{-} + K^{0}$$

E12 PSI Seminar

L

E12 PSI Seminar

Boltzmann Fits

L

E12 PSI Seminar

