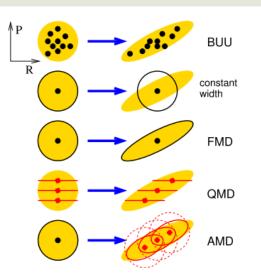
Sensitivity of collective flow to the density dependence of the symmetry energy

Zach Kohley


National Superconducting Cyclotron Laboratory Michigan State University, E. Lansing, MI

International Conference on Nuclear Symmetry Energy and Reaction Mechanisms (ASY-EoS) Siracusa, Sicily, Italy Sept 4, 2012

Outline

- Motivation
- Experiment
- E_{sym}(ρ) sensitivity of theoretical models to IMF flow
- MoNA Experiment
- Summary
- Acknowledgements

Ono and Randrup., EPJA30(2006)109

Motivation

International Scientific Committee Local Organizing Committee

G. LANZALONE(Univ, "Kore", Enna & INFN-LNS, Catania, Italy) T. MINNITI (University of Messina and INFN-Gr. Coll. Me, Italy) S. PIRRONE (INFN-Catania, Italy) G. POLITI (University of Catania & INFN-LNS, Catania, Italy) F. RIZZO (University of Catania & INFN-LNS, Catania, Italy) P. RUSSOTTO (INFN-Catania, Italy) S. SANTORO (University of Messina and INFN-Gr. Coll. Me, Italy) G. VERDE (INFN-Catania, Italy)

Secretary and Press Office AGRI ANEN-CA

Program of the ASY-EOS 2012 ational Workshop on Nuclear Symmetry Energy and Reaction Mechanism (Venue: Provincia Regionale di Siracusa, Via Roma 31, Siracusa) as of 17/08/2012

Tuesday 4th September, 2012

Morning session (9:45-13:05)

8:30-9:30 Registration 09:30-9:45 Welcome

09:45-10:15 Z. Chajecki (NSCL/MSU, East Lansing USA): T.B.A (25'+5')

10:15-10:35 E. De Filippo (INFN-Catania, Italy) : Probing the symmetry energy at low density using observables from neck fragmentation mechanism (17'+3')

10:35-10:55 P. Marini (GANIL, Caen, France) : Extracting information on the symmetry energy by coupling the VAMOS spectrometer and the 4pi INDRA detector to reconstruct primary fragments (17'+3')

10:55-11:15 P.C. Wigg (Department of Physics, University of Liverpool, UK) : Nuclear Symmetry Energy in Ca+Ca Collisions (17'+3')

11:15-11:45 Coffee breat

11:45-12:05 A.M. Sanchez-Benitez (Department of Applied Physics, University of Huelva, Spain) : Scattering of 8He on 2008Pb at energies around the Coulomb barrier (17'+3')

12:05-12:25 V. Scuderi (INFN-LNS, Catania, Italy) : Elastic scattering and reaction mechanisms induced by light halo nuclei at the barrier (17+3')

12:25-12:45 P. Diaz Fernandez (Univ. Santiago de Compostela, Spain) : An investigation into quasifree scattering of neutron-rich carbon and nitrogen nuclei around N=14 (17'+3') 12:45-13.05 M. Young (NSCL/MSU, East Lansing, USA) : Measurement of emitted tritons and ³He from 12,124Sn+112,124Sn collisions at Ebeam=50 and 120 MeV/nucleon (17'+3')

Evening session (15:00-18:00)

15:00-15:30 A. Krasznahorkay (Inst. of Nucl. Res. - ATOMKI, Debrecen Hungary) : Experimental investigation of the symmetry energy by studying giant resonances (25'+5')

15:30-15.50 S. Hudan (Indiana University, USA) : Tracking saddle-to-scission dynamics using N/Z in projectile breakup reactions (17'+3')

15:50-16:10 Z. Basrak (R. Boskovic Institute, Croatia) : Energy deposition in heavy-ion reactions at intemediate energies (17+3')

16:10-16:30 J. Winkelbauer (Michigan State University National Superconducting Cyclotron Laboratory, Lansing, USA): Precision Measurement of Isospin Diffusion in Sn+Sn Collisions (17+3')

16:30-17:00 Coffee break

17:00-17:20 Z. Kohley (National Superconducting Cyclotron Laboratory, East Lansing, USA) :Sensitivity of collective flow to the density dependence of the symmetry energy (17'+3')

17:20-17:40 S. Yennello (Texas A&M University College Station, TX, USA) : Asymmetry Dependence of the Nuclear Caloric Curve (17'+3')

17:40-18:00 M. Veselsky (Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia) : Symmetry energy and nucleon-nucleon cross sections (17+3')

Wednesday 05th September, 2012

Morning session (9:00-12:50)

09:00-09:30 L. Fabbietti (Excellence Cluster Universe, TUM Munich) : Kaon properties in cold or dense nuclear matter (25'+5')

09:30-09:50 P. Pawloski (IFJ-PAN, Krakow, Poland) : Nuclear cluster formation in the participant zone of heavy-ion relativistic reactions" (17+3')

09:50-10:10 K. Gill (Goethe-Universitate, Frankfurt, Germany) : Rare kaon signals from Au+Au collisions at HADES (17+3')

10:10-10:30 R. Bhattacharya (University of Calcutta, Kolkata, India) : Tensor Interaction and its effect on Spin-orbit Splitting of Shell Model States (17'+3')

10:30-11:00 Coffee break

11:00-12:00 J. Aichelin (Subatech, Nantes, France) and H.H. Wolter (University of Munich, Garching, Germany) : Tandem session on Status of transport models in the search for the symmetry energy (at suband supra-saturation densities) (50'+10')

12:00-12:30 D. Cozma (IFIN-HH, Bucharest, Romania) ; Constraints on the density dependence of the symmetry energy from elliptic flow data (25'+5')

12:30-12:50 A. Le Fevre (GSI Helmholtzzentum Darmstadt) ; A new approach to detect hypernucleij and isotopes in the QMD phase space distribution at relativistic energies (17'+3')

Evening session (15:00-18:00)

15:00-15:30 W. Reisdorf (GSI, Darmstadt, Germany) : Heavy ion collisions (HIC) in the 1A GeV regime: how well can we join up to astrophysics? (25'+5')

15:30-16:00 T. Nakamura (Tokyo Institute of Technology, Tokyo, Japan) : Breakup Reactions of Exotic Nuclei at the large acceptance spectrometer SAMURAI at RIBF (25'+5')

16:00-16:20 I. Vidana (University of Coimbra, Coimbra, Portugal) : Nuclear symmetry energy and the r-mode instability of neutron stars (17+3')

16:20-16:50 Coffee break

National Science Foundation Michigan State University

16:50-17:35 T. Isobe (Riken, Saitama, Japan) and A. McIntosh (Texas A&M University, College Station, USA): Tandem session on SAMURAI TPC: A Time Projection Chamber to Study the Nuclear Symmetry Energy at RIKEN-RIBF with Rare Isotope Beams (40'+5')

17:35-18:00 Open discussion (round table)

18:00 -20:00 Visit to Siracusa

21:00 Social dinner

Thursday 06th September, 2012

Morning session (9.00-13.00)

9:00-9:30 M.B. Tsang (Michigan State University, East Lansing, USA): T.B.A (25'+5')

9:30-10:00 I. Martel (University of Huelva, Huelva, Spain) : GASPHYDE particle detectors and the new superconducting linac facility LRF-Huelva (25'+5')

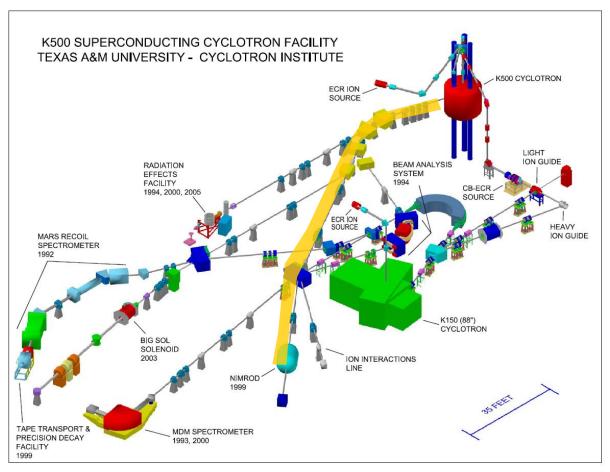
10:00-10:20 H. Alvarez Pol (Univ. Santiago de Compostela, Spain) : The CALIFA calorimeter in the versatile R3B setup (17'+3')

10:20-10:40 J. Lukasik (IFJ-PAN, Krakow, Poland) : Pulse shape analysis for KRATTA modules (17'+3')

10:40-11:00 I. Gasparic (TU Darmstadt/IRB Zagreb) : The NeuLAND detector of the R3B collaboration (17+3')

11:00-11:30 Coffee break

11:30-12:00 B. Hong (Korea University, Seoul, Republic of Korea) : New opportunity for nuclear symmetry energy using LAMPS in Korea rare isotope accelerator (25'+5')


12:00-12:30 N. Herrmann (University of Heidelberg, Germany) : Compressed baryonic matter: the CBM experiment at \$1\$100 (25+5)

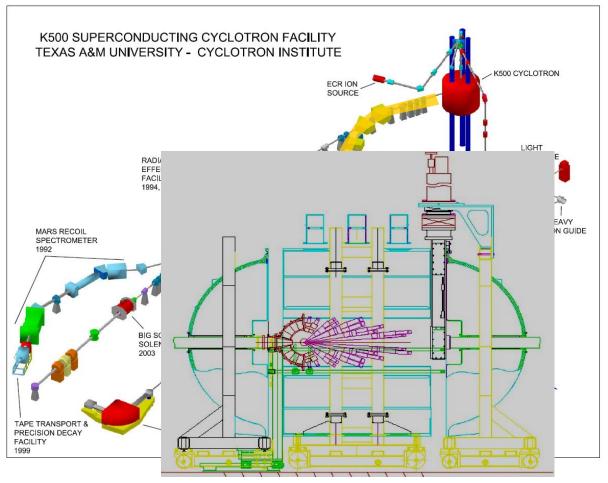
12:30-13:00: G. Batignani (INFN Sezione di Pisa, Italy) : The SuperB Project (25'+5')

The nuclear FoS and its isospin dependence are deeply embedded into many facets of nuclear science.

Experiment

Beam Energy: 35 MeV/u Reactions: ⁷⁰Zn+⁷⁰Zn, ⁶⁴Zn+⁶⁴Zn, & ⁶⁴Ni+⁶⁴Ni

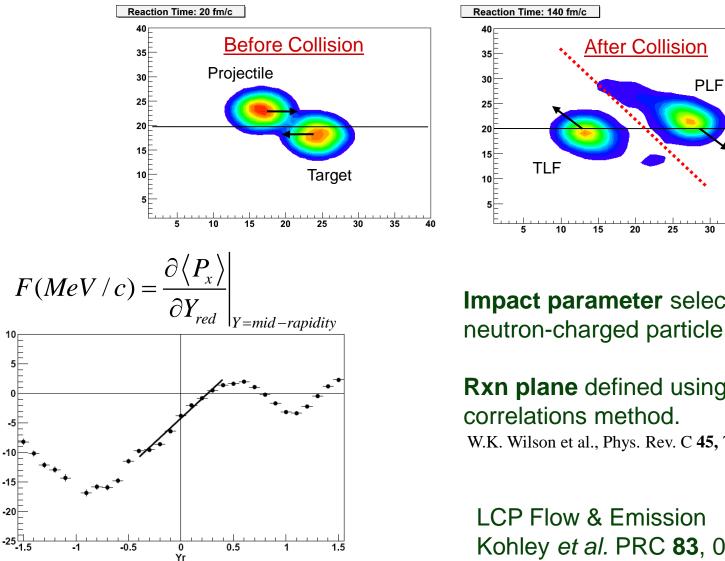
NIMROD-ISiS

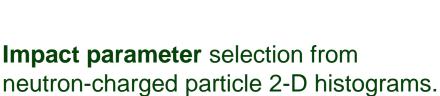

- 14 Concentric Rings (ΔE-E)
- 3.6-167 degrees
- Neutron Ball

National Science Foundation Michigan State University

Experiment

Beam Energy: 35 MeV/u Reactions: ⁷⁰Zn+⁷⁰Zn, ⁶⁴Zn+⁶⁴Zn, & ⁶⁴Ni+⁶⁴Ni


NIMROD-ISiS


- 14 Concentric Rings (ΔE-E)
- 3.6-167 degrees
- Neutron Ball

National Science Foundation Michigan State University

Flow

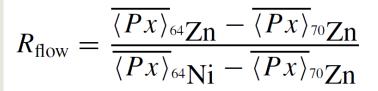
35

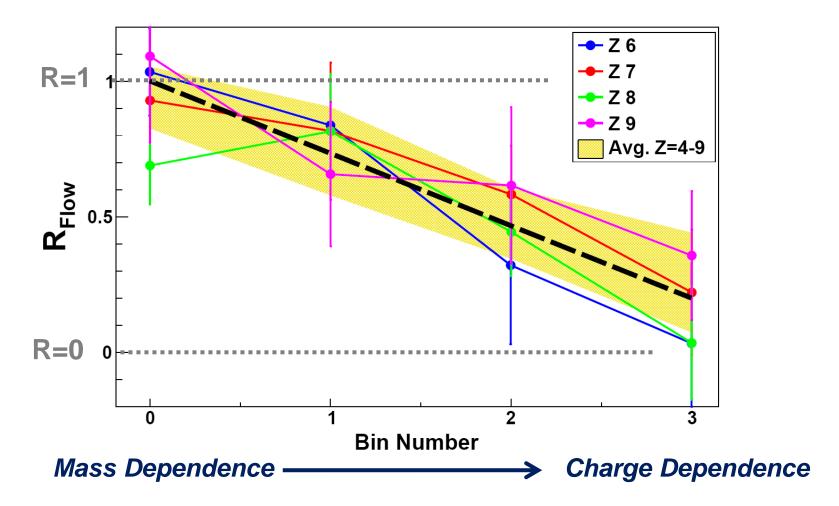
40

Rxn plane defined using azimuthal W.K. Wilson et al., Phys. Rev. C 45, 738, (1992).

Kohley et al. PRC 83, 044601 (2011)

10 5

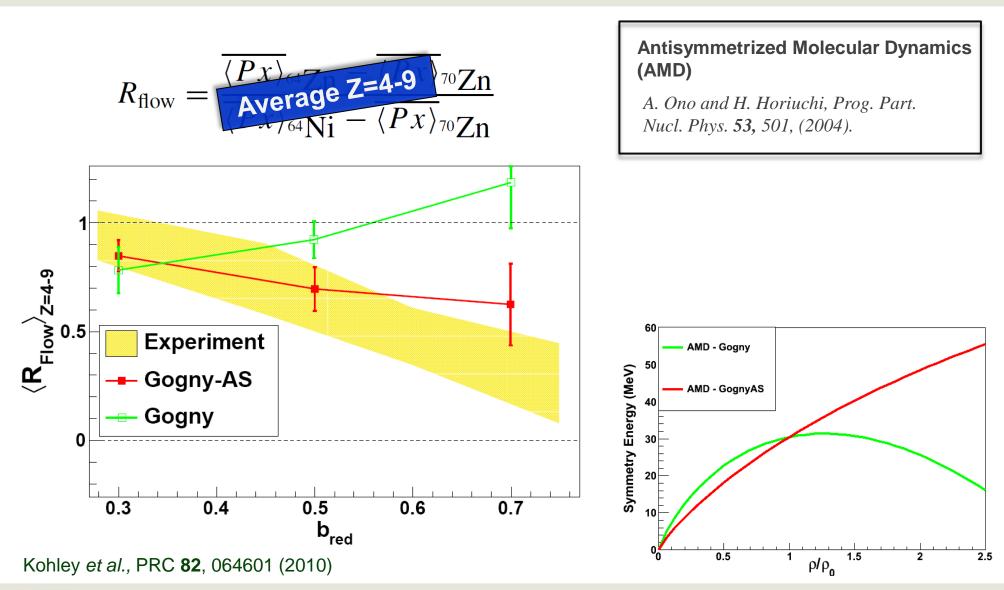

-5


-20

<Px/A> ((MeV/c)/nucl.)

National Science Foundation Michigan State University

IMF flow



Kohley et al., PRC 82, 064601 (2010)

National Science Foundation Michigan State University

IMF flow

National Science Foundation Michigan State University

Stochastic Mean-Field Model SMF (Colonna, Rizzo, Baran, Di Toro...)

-Rooted in BLE

 $\frac{df}{dt} = \frac{\partial}{\partial t}f - \{H[f], f\} = I_{coll}[f] + \delta I[f]$

should provide accurate description of one-body dynamics
uses test particle method to solve

BLE - "stochastic" nature of the collisions

(last term in eq. above) is included through agitation of spatial density. - Mean-field (no nn-interaction) do not get natural production of light clusters.

100 test particles per nucleon
Ran for 220 fm/c and phase-space coalescence applied.

Constrained Molecular Dynamics
CoMD-II
(Papa, Bonasera)

- Improvement beyond typical QMD simulations.

- Constrains the occupation density to fulfill Pauli principle.

 $\overline{f_i} \leq 1$ (for all i),

 $\overline{f_i} \equiv \sum_{i} \delta_{\tau_i, \tau_j} \delta_{s_i, s_j} \int_{\mathbf{h}^3} f_j(\mathbf{r}, \mathbf{p}) d^3 r d^3 p.$

Advantage is good description of Pauli blocking with N² computational increase in comparison to N⁴ (AMD)
Special care to conserve total angular momentum.

- Fast computation allows for time evolution till 3000 fm/c

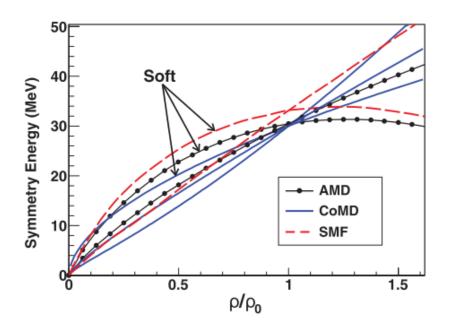
- System decays dynamically.

- Gemini++ still applied but has very minimal effect.

Antisymmetrized Molecular Dynamics: AMD-DS (Ono)

- Wavefunction for a reaction with A nucleons represented by a Slater determinant of Gaussian wave packets,

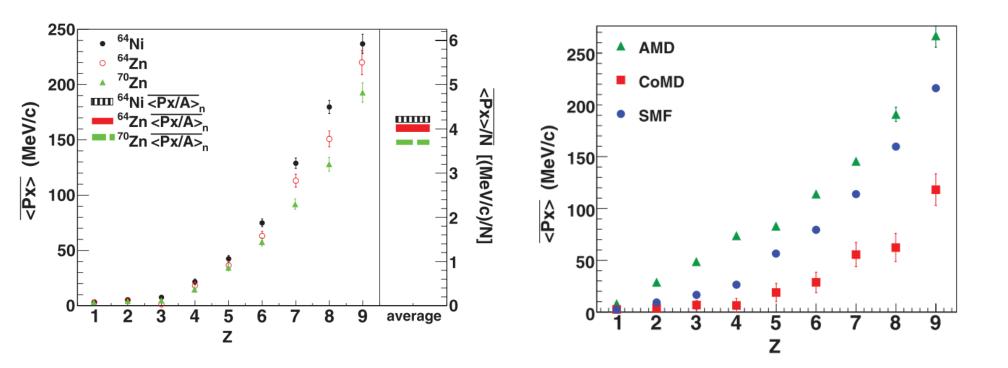
$$\Phi(Z) = det \left[exp \left\{ -\nu \left(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}} \right)^2 + \frac{1}{2} \mathbf{Z}_i^2 \right\} \chi_{\alpha i}(j) \right]$$


- Fermionic nature of nucleus is respected at all times.

 Many improvements to reproduce the clustering observed in experiments. AMD, AMD-V, AMD-DS and now AMD + clust.

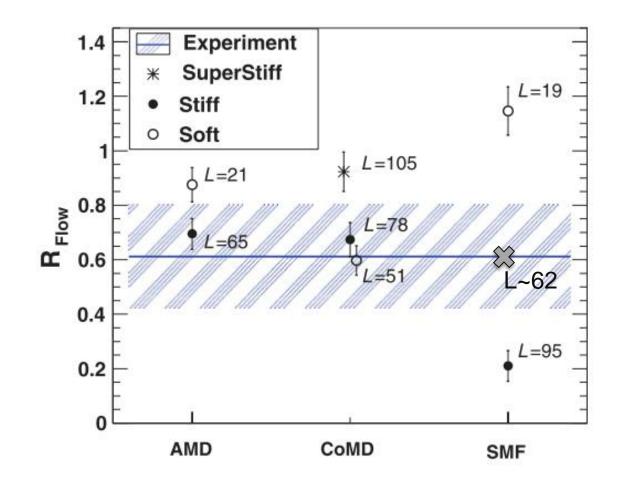
- Main issue is computationally expensive.

- Was coupled to statistical decay Gemini++ after 300 fm/c.



Simulation	Form	$E_{\rm sym}(\rho_\circ)$	L (MeV)
AMD	Stiff	30.5	65
	Soft	30.5	21
SMF	Stiff	33	95
	Soft	33	19
CoMD	Superstiff	30	105
	Stiff	30	78
	Soft	30	51

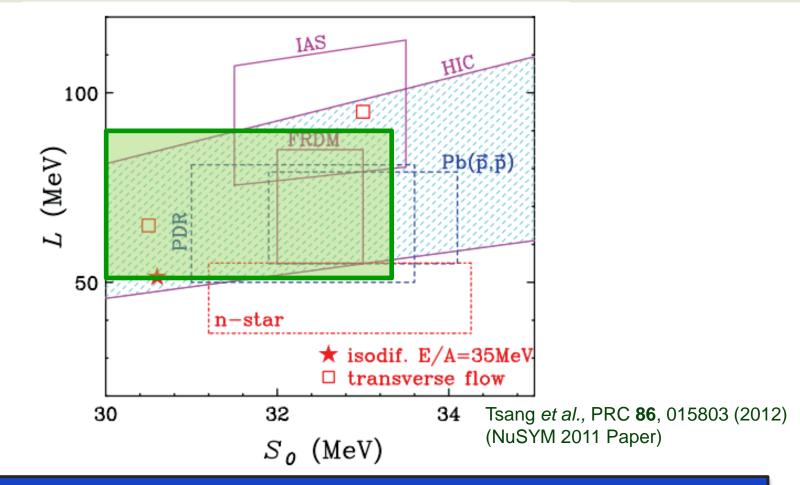
Kohley et al., PRC 85, 064605 (2012)



$$R_{\text{flow}} = \frac{\overline{\langle Px \rangle}_{{}^{64}\text{Zn}} - \overline{\langle Px \rangle}_{{}^{70}\text{Zn}}}{\overline{\langle Px \rangle}_{{}^{64}\text{Ni}} - \overline{\langle Px \rangle}_{{}^{70}\text{Zn}}} = 0.61 \text{ +/- } 0.14$$

Kohley et al., PRC 85, 064605 (2012)

National Science Foundation Michigan State University



$$R_{\text{flow}} = \frac{\overline{\langle Px \rangle}_{64} - \overline{\langle Px \rangle}_{70} - \overline{\langle P$$

Kohley et al., PRC 85, 064605 (2012)

National Science Foundation Michigan State University

WAIT... The significance of the agreement is outweighed by the differences in the sensitivity of the models to *L*.

PHYSICAL REVIEW C 84, 054603 (2011)

Influence of transport variables on isospin transport ratios

D. D. S. Coupland,^{*} W. G. Lynch,[†] and M. B. Tsang[‡] National Superconducting Cyclotron Laboratory, Physics and Astronomy Department, and Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA

P. Danielewicz[§] National Superconducting Cyclotron Laboratory and Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824, USA

> Yingxun Zhang^{||} China Institute of Atomic Energy, P.O. Box 275 (10), Beijing 102413, P.R. China (Received 18 July 2011; published 3 November 2011)

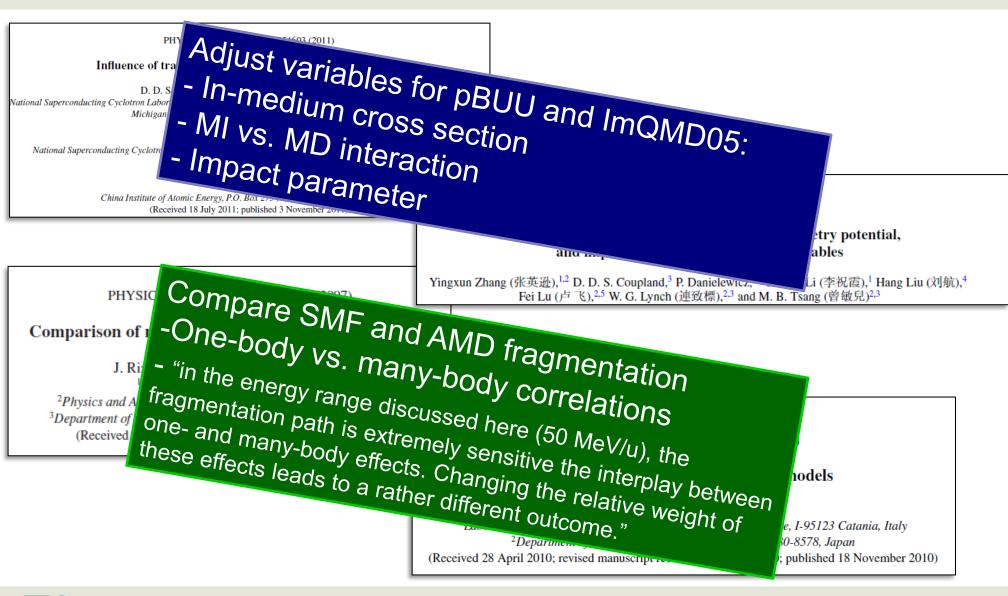
PHYSICAL REVIEW C 76, 024611 (2007)

Comparison of multifragmentation dynamical models

J. Rizzo,^{1,2} M. Colonna,^{1,2} and A. Ono³ ¹LNS-INFN, I-95123 Catania, Italy ²Physics and Astronomy Department, University of Catania, Italy ³Department of Physics, Tohoku University, Sendai 980-8578, Japan (Received 18 September 2006; published 27 August 2007) PHYSICAL REVIEW C 85, 024602 (2012)

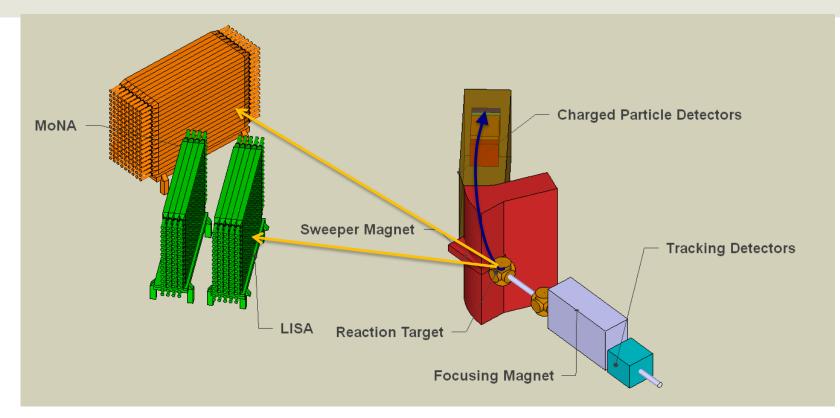
Influence of in-medium NN cross sections, symmetry potential, and impact parameter on isospin observables

Yingxun Zhang (张英逊),^{1,2} D. D. S. Coupland,³ P. Danielewicz,^{2,3} Zhuxia Li (李祝霞),¹ Hang Liu (刘航),⁴ Fei Lu (卢飞),^{2,5} W. G. Lynch (連致標),^{2,3} and M. B. Tsang (曾敏兒)^{2,3}

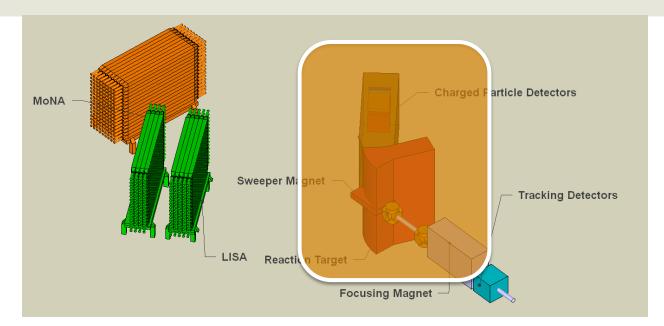

PHYSICAL REVIEW C 82, 054613 (2010)

Fragmentation paths in dynamical models

M. Colonna,¹ A. Ono,² and J. Rizzo¹

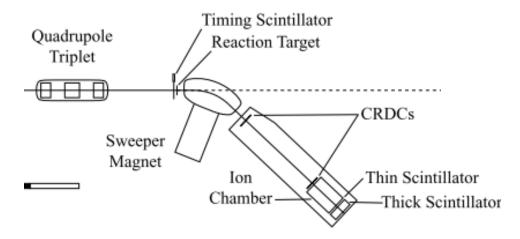

¹Laboratori Nazionali del Sud–Istituto Nazionale Fisica Nucleare, I-95123 Catania, Italy ²Department of Physics, Tohoku University, Sendai 980-8578, Japan (Received 28 April 2010; revised manuscript received 5 October 2010; published 18 November 2010)

MoNA-LISA Experiment

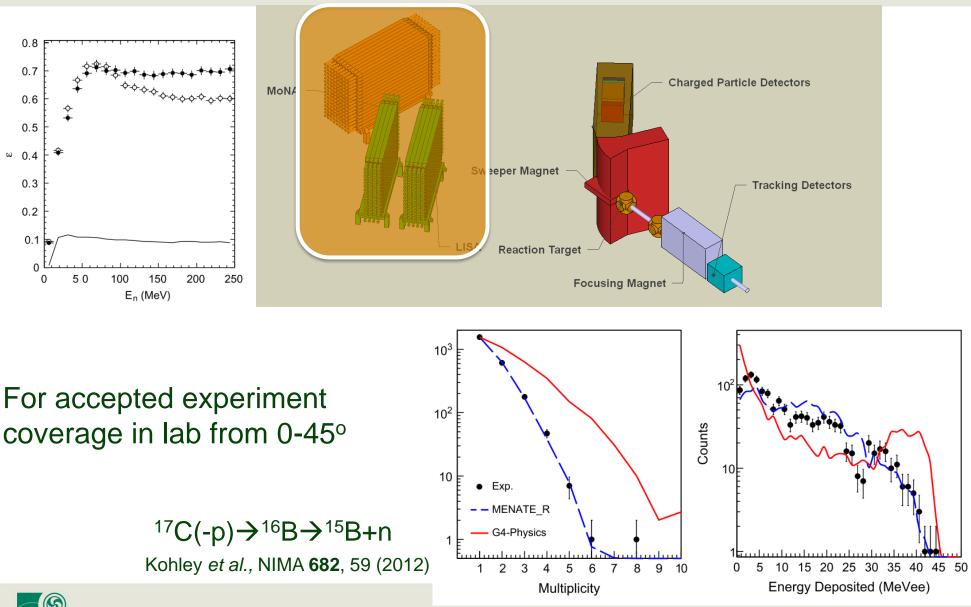

Develop new program:

Measuring projectile-like fragments (PLFs) in coincidence with neutrons.

National Science Foundation Michigan State University


MoNA-LISA Experiment

Sweeper Magnet:


- 4 Tm, bends fragments ~43°
- Large acceptance; +/- 8% $B\rho$
- CRDCs for tracking (Mass, Energy)
- Csl Hodoscope

Z_{PLF} to define impact parameter

MoNA-LISA Experiment

National Science Foundation Michigan State University

Summary

- IMF flows useful probes of EoS (~linear form E_{sym})
- Sensitivity of $E_{sym}(\rho)$ dependence on treatment of reaction dynamics.
- Constrain "weight" one-body vs. many-body effects
- New program to use MoNA-Sweeper for reaction studies.

