Elastic scattering and reaction mechanisms induced by light halo nuclei

Valentina Scuderi INFN-Laboratori Nazionali del Sud

ASY-EOS 2012 International Workshop on Nuclear Symmetry Energy and Reaction Mechanisms, 4-7 September 2012 - Siracusa, Sicily, Italy

Outline of the talk

- Motivations
- Elastic scattering and direct reactions induced by halo nuclei and our ⁶He+⁶⁴Zn and ¹¹Be+⁶⁴Zn data
 - A brief summary on the results
 - Fusion reactions and our ⁶He+⁶⁴Zn data
 - Conclusions

Collisions around the barrier induced by neutron halo nuclei

Are direct mechanisms (e.g. break-up, transfer) favourite ?

What do we expect for fusion reactions ?

Extended tails ↓ enhancement of sub-barrier fusion

Key question: which is the effect of coupling to continuum on the other channels ?

Elastic scattering: a fundamental tool to investigate

- halo structure
- influence of break-up channel
- > nuclear potential between the colliding nuclei

Most of the experiments performed with ⁶He beams

Shows a reduction in the elastic cross-section Requires a large imaginary diffuseness ! *long-range absorption*

L. Acosta et al Phys Rev, C 84, 044604 (2011)

Larger total reaction cross-section for ⁶He induced collision with respect to ⁴He at the same Ecm.

A. Di Pietro et al. Phys. Rev. C 69(2004)044613

^{4,6}He+⁶⁴Zn @ LLN: transfer and break-up processes

V. Scuderi et al. Phys.Rev. C 84, 064604 (2011)

Experiment with post - accelerated 1n-halo ¹¹Be beam

- 9,10,11Be + 64Zn elastic scattering angular distributions @ 29 MeV.
- Why comparison with the reactions induced by ^{9,10}Be on ⁶⁴Zn ?
 - ¹⁰Be core of ¹¹Be
 - Be weakly bound but non-halo.
- ¹¹Be transfer/break-up angular distribution.

- 5 ΔE (6-15 µm) E (90-130 µm) Si Surface Barrier detector telescopes
- > Angular distribution: $15^{\circ} \le \theta_{lab} \le 110^{\circ}$

- 6 ΔE (50 µm DSSDs) -E (1500 µm Single Pad) Si detector telescopes
- > Total covered angular range $10^{\circ} \le \theta_{lab} \le 150^{\circ}$

^{9,10,11}Be + ⁶⁴Zn elastic scattering angular distributions

A. Di Pietro, G. Randisi, V. Scuderi et a. Phys. Rev. Lett. 105,022701(2010)

Optical Model analysis

A very large diffuseness of DPP (*a*_{si} ≈ 3.5fm) is needed ↓ long range absorption mechanisms

A. Di Pietro, G. Randisi, V. Scuderi et a. Phys. Rev. Lett. 105,022701(2010)

Optical Model analysis

A. Di Pietro, V. Scuderi, A.M. Moro et al., Phys. Rev. C 85, 054607 (2012)

Elastic suppression non well reproduced

Continuum Discretised Coupled Channel Calculations

A. Di Pietro, V. Scuderi, A.M. Moro et al., Phys. Rev. C 85, 054607 (2012)

Suppression of the elastic: coupling to Coulomb or nuclear break-up?

Both nuclear and Coulomb couplings are responsible for the suppression of the quasi-elastic cross-section

Reaction cross-section

 $\sigma_{\text{Reac}}(^{9}\text{Be}) \approx 1.1b \ \sigma_{\text{Reac}}(^{10}\text{Be}) \approx 1.2b$ $\sigma_{\text{Reac}}(^{11}\text{Be}) \approx 2.7b$

Which is the origin of the ¹¹Be total reaction enhancement?

Collisions around the barrier induced by halo nuclei

- Damping of elastic cross-section for the halo nucleus at large impact parameters due to the coupling to the continuum.
- > Both Coulomb and nuclear coupling contribute to the effect.
- > Total reaction cross-sections for the halo nucleus larger than for the well bound isotopes e.g. $\sigma_{\text{Reac}}(^{6}\text{He}) \approx 2 \sigma_{\text{Reac}}(^{4}\text{He}), \sigma_{\text{Reac}}(^{11}\text{Be}) > 2 \sigma_{\text{Reac}}(^{9,10}\text{Be}).$
- > Very large cross-section for transfer and breakup events saturating most of the $\sigma_{Reac.}$

New data with halo beams different than ⁶He needed

Fusion reactions around the barrier with halo nuclei

Again most of the experiments performed with ⁶He beams (e.g. ⁶He+⁶⁴Zn, ⁶He+²⁰⁹Bi, ⁶He+²³⁸U, ⁶He+⁶⁵Cu, ⁶He+¹⁹⁷Au, ⁶He +²⁰⁶Pb, ¹¹Be+²⁰⁹Bi)

Different conclusions reached concerning the presence of enhancement effects on low energy fusion cross sections due to the projectile halo structure ↓

Most of data do not explore the sub barrier region with reasonable errors

Static effects

Halo affects the shape of the projectile-target potential reducing the barrier diffuse tail \Rightarrow reduction of Coulomb barrier and increase of σ_{FUS} ?

Dynamic effects

Coupling not only to bound states but also to continuum

ſ

Role played by static and dynamic effects on conclusions not always clear

The activation technique we are using to measure $\sigma_{FUS}(E)$

^{4,6}He+⁶⁴Zn @ LLN and RBI Zagreb : fusion excitation functions

Fusion with halo nuclei : additional examples from literature

Valenunia Scuuent AS I-LOS 2012

Fusion of halo nuclei: can we reach some conclusions?

- There is an effect of the halo structure on fusion below the barrier
- Static effects appears to be important but probably not the only ones
- Most of the experiments performed with ⁶He beams and few data below the barrier

Need for new precise data and systematic analysis

Collaboration

L. Acosta, F. Amorini, M.J.G. Borge, A. Di Pietro, P. Figuera, M. Fisichella, L.M. Fraile, J. Gòmez-Camacho, H. Jeppesen, M. Lattuada, I. Martel, M. Milin, A. Musumarra, A. M. Moro, M. Papa, M.G. Pellegriti, R.Raabe, G.Randisi, F. Rizzo, D. Santonocito, E.M.R. Sanchez, G. Scalia, V. Scuderi, O. Tengblad, D. Torresi, A.M. Vidal, M. Zadro

INFN- Laboratori Nazionali del Sud and sezione di Catania, Catania, Italy

- Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy
- Departamento de Física Aplicada, Universidad de Huelva, Huelva, Spain
- Insto. de Estructura de la Materia, CSIC, Madrid, Spain
- CERN, Geneva, Switzerland
- Departamento de Física Atómica, Moleculary Nuclear, Universidad de Sevilla, Spain
- Ruđer Boŝković Institute, Zagreb, Croatia
- •Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Università di Catania, Catania, Italy
- DAPNIA/SPhN, CE Saclay, Gif-sur-Yvette
- •LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

Thank you

Detector geometry determination

Rutherford scattering for ¹²C + ¹⁹⁷Au @ 28 MeV and ¹⁰Be + ¹⁹⁷Au @ 29.4 MeV to cross check the geometry determination.

¹¹Be+⁶⁴Zn quasi-elastic angular distribution

 $\sigma_{\text{inelastic}} \approx 400$

Effect of coupling to Coulomb dipole break-up as a function of the target charge for ⁶He induced collision at energy around the barrier

9,10,11Be+64Zn optical potentials

Reaction	V(MeV)	a(fm)	R ₀ (fm)	V _i (MeV)	a _i (fm)	R _{i0} (fm)	V _{Si} (MeV)	a _{Si} (fm)	R _{Si} (fm)
⁹ Be+ ⁶⁴ Zn	126	0.6	1.1	17.3	0.75	1.2			
¹⁰ Be+ ⁶⁴ Zn	86.2	0.7	1.1	43.4	0.6	1.2			
¹¹ Be+ ⁶⁴ Zn	86.2	0.7	1.1	43.4	0.6	1.2	0.151	3.5	1.3