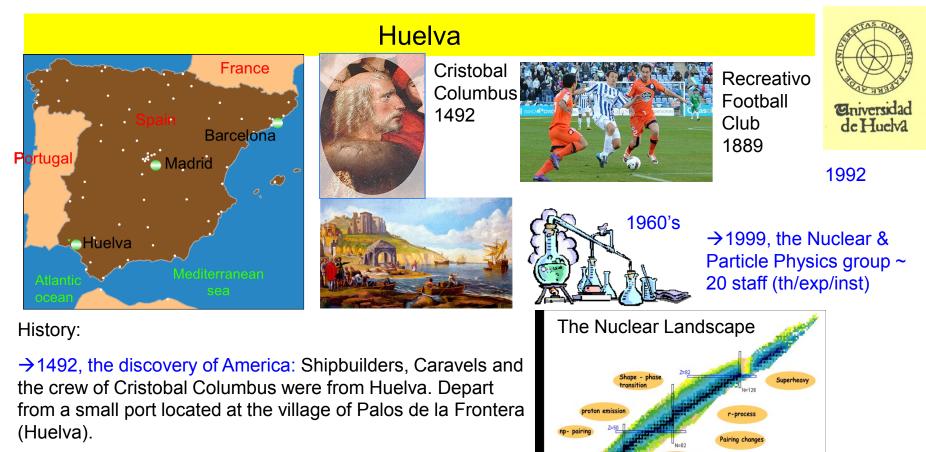
"GASPHYDE particle detectors and the new superconducting linac facility LRF-Huelva"

> Ismael Martel Department of Applied Physics University of Huelva (Spain)


ASY-EOS 2012 International Workshop on Nuclear Symmetry Energy and Reaction Mechanisms

Outline:

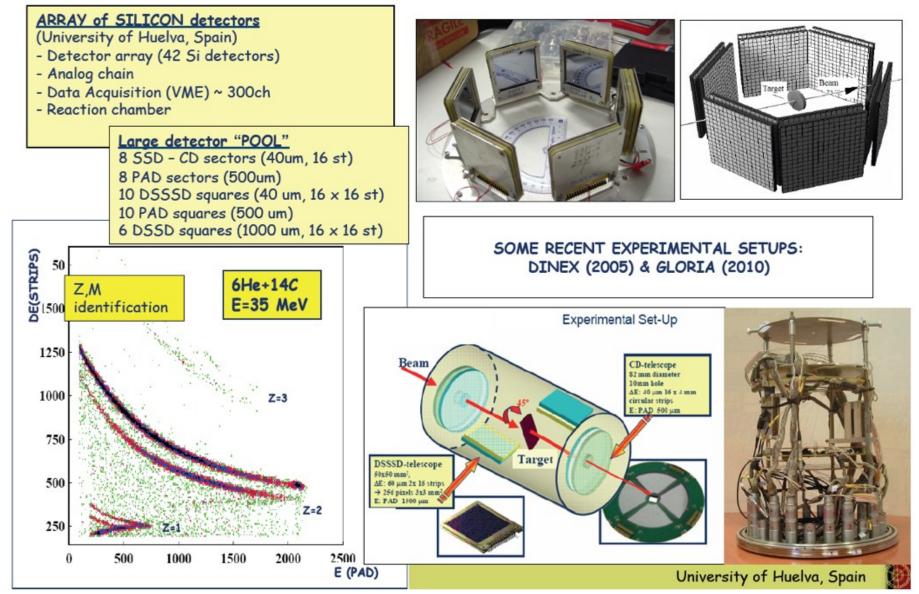
 \rightarrow The research group at Univ. of Huelva

→ Recent developments on HYDE-GASPARD

 \rightarrow The superconducting linac project at Huelva (LRF)

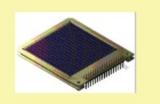
→1889, first football team in Spain (soccer) founded by British workers at "Rio Tinto" mines (Rio Tinto Company, London, 1873).

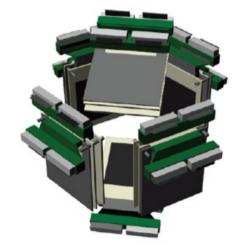
→1960's, one of largest industrial sites in Spain (Chemicals, Petrol & Mining industry)


→1992, University of Huelva was born, one of the youngest
 Universities of Spain. (15.000 students/150.000 habitants)
 → Mainly Technical University/Engineering

 \rightarrow 2012, superconducting linear accelerator

Detector arrays @ UHU





GLORIA (Glogal Ion Reaction Array)

6 DSSSD-telescopes 50x50 mm2, DE: 40 mm (16 x 16), 1000 mm (16 x 16) Strip pitch: 3 mm, Solid angle ~25%

Distance to target (center square): 60 mm Angular range: 15 -165 degrees Lab Etotal_resolution ~ 150 keV → Mounted on a flange ISO250 LF

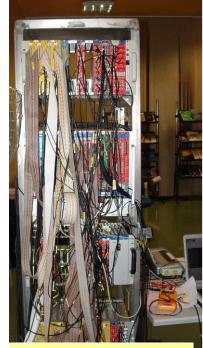
GLORIA at GANIL/SPIRAL

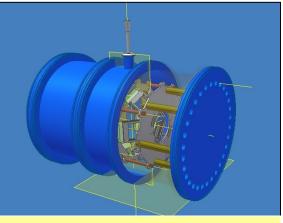
DETECTOR LABORATORY @ UHU

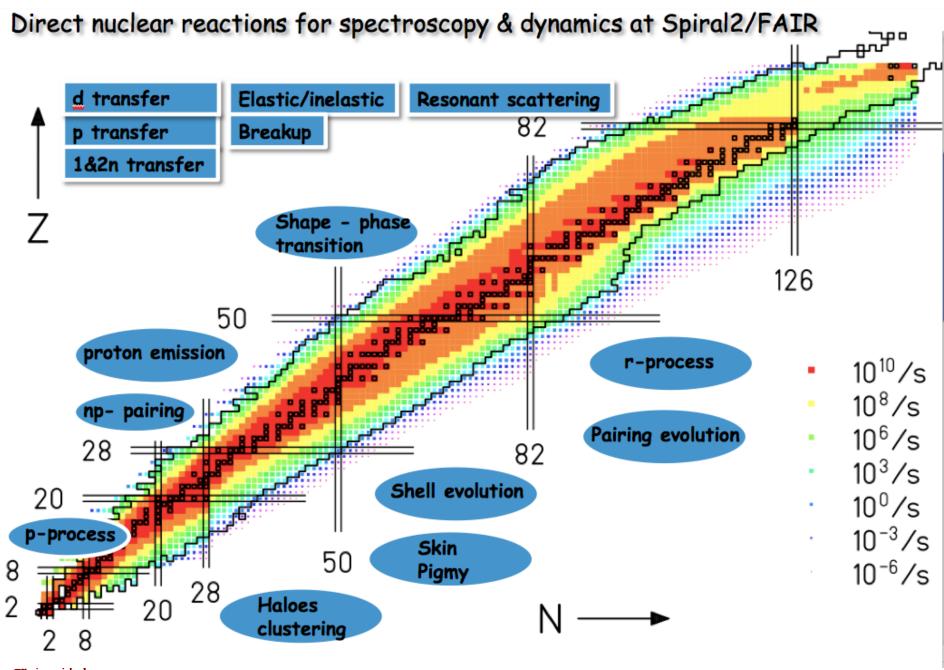
High vacuum chamber, DACQ's



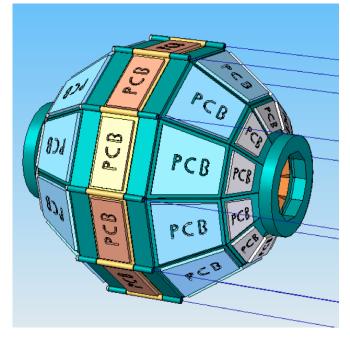
Mechanical Workshop

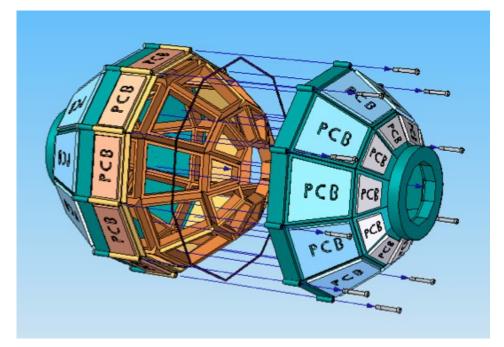



Detector test & Arrays → DINEX/3ST Prototype


Nuclear electronics lab: Electronics test bench, PCB design & developments...

FEE electronics DINEX+SAND


Mechanical design DINEX/3ST CHAMBER



Elniversidad de Huelva

I. MARTEL, Univ. Huelva

Mechanical design of HYDE

Characteristics:

- ~ 4 PI ARRAY
- Detection of charged particles.
- Particle ID using PSA , DE/E and TOF.
- Energy & angular resolution
- (< 150 keV, 1°/0.1°).
- Large multiplicity (> 3)

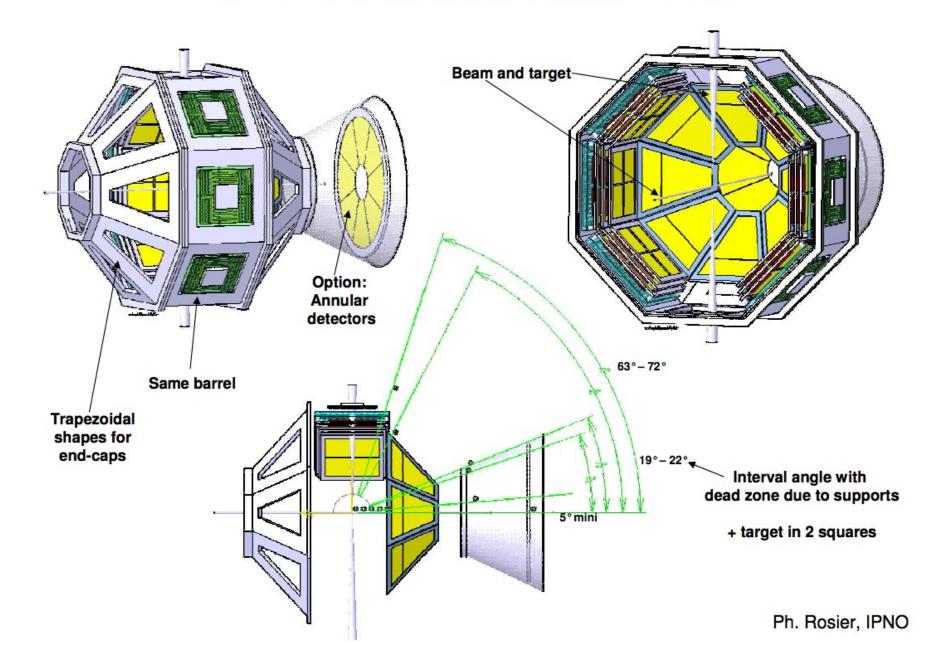
Construction:

- Chamber < 380 mm diameter
- 49 DETECTOR CELLS
- 3 different shapes: square
 - + 2 trapezoids fitting 4" wafer.
- Cylindrical symmetry/10 sides

Mechatronics

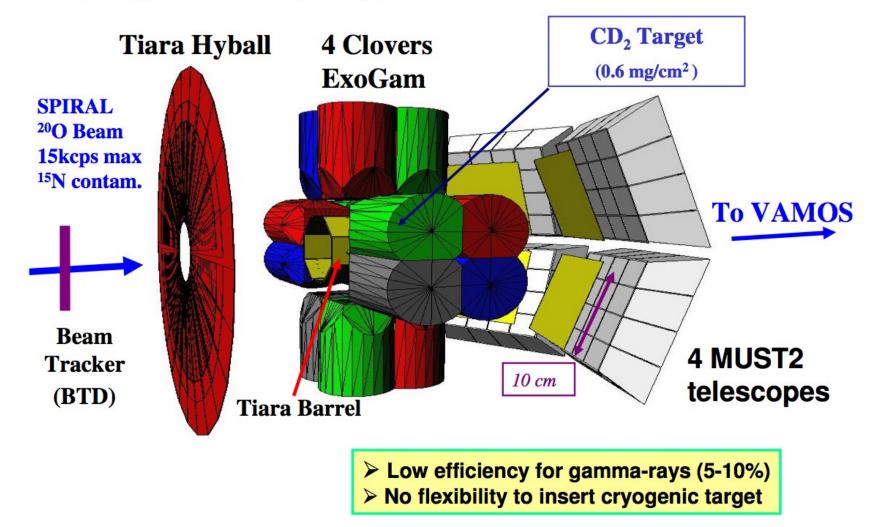
- FFE on air
- 31.360 channels
- High density feedthroughs
- -Multiplexing.

I. MARTEL, Univ. Huelva

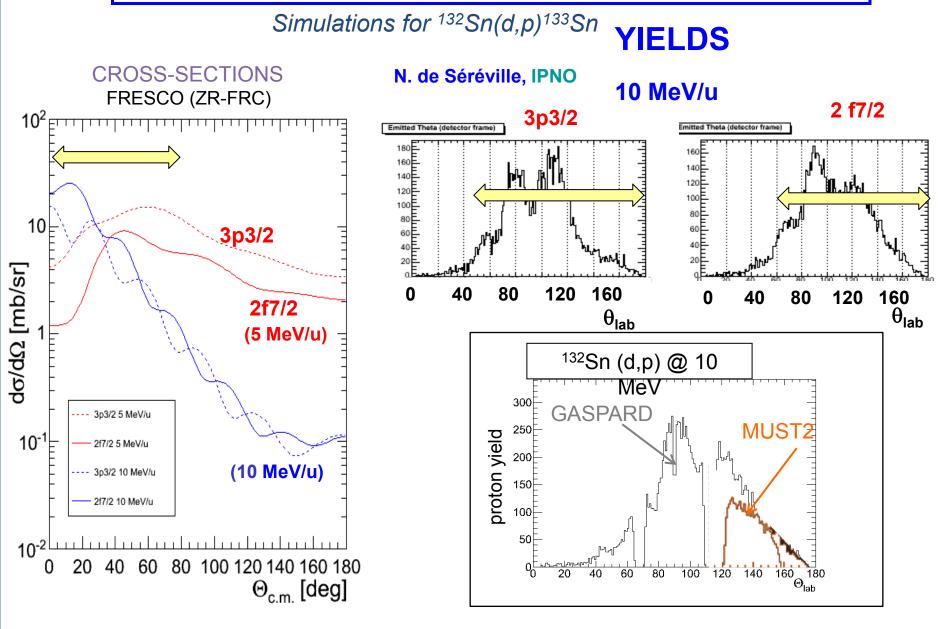

Detector cell (Silicon)

4 inches, NTD silicon wafers
Strip size 0,4 mm, Multilayer
(5 layer)

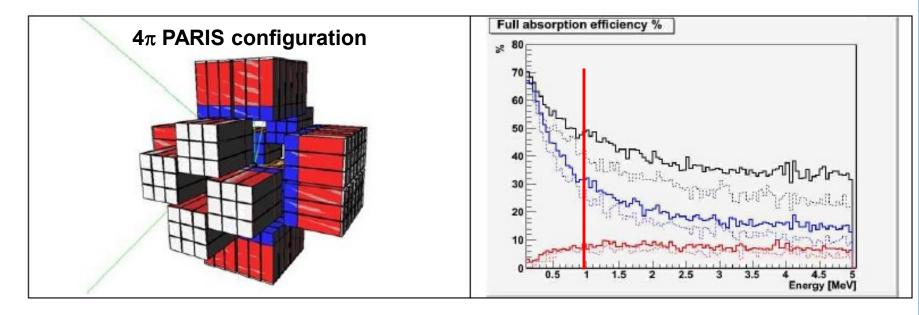
Design constraints:


- Subsystem of AGATA array
- Use at other RIB facilities
- (SPIRAL2, HIE-ISOLDE,
- LEGNARO-SPES)
- -Modularity and portability

Towards a "GaspHyde" proposal


Limitations of the combined setup

A currently used combined setup:



Importance of angular coverage

4π silicon array fully integrable in PARIS, AGATA

Efficiency gain ~20 for p-γ **coincidences** for ¹³²Sn(d,p) @ 10 MeV/u w/r to previous MUST2 + EXOGAM setup

Resolution: ~40 keV at 10 MeV/u with 2mg/cm² CD2 target

Large improvement in particle/gamma efficiency

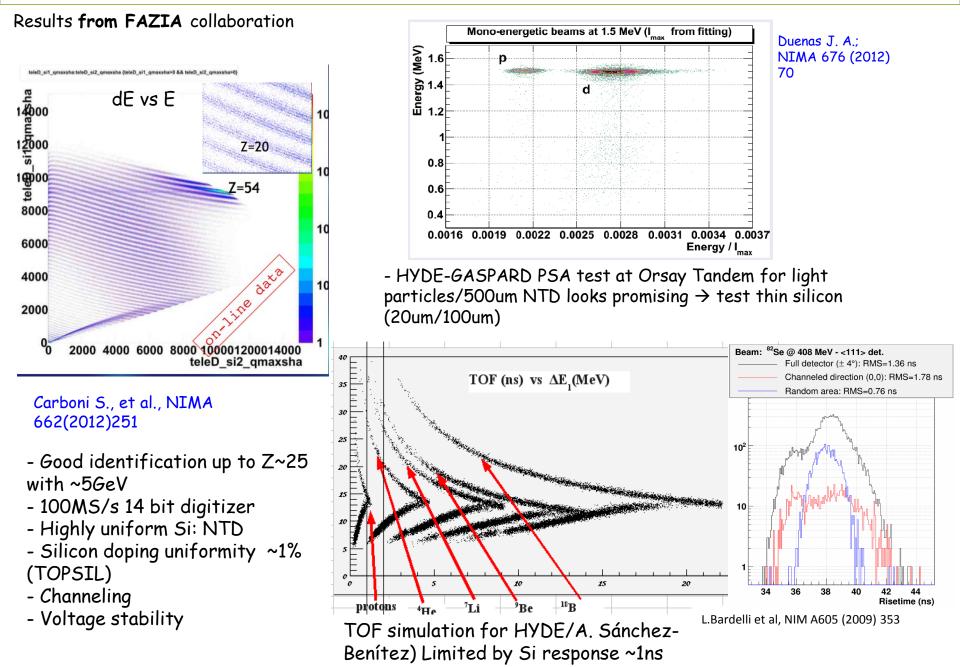
HYDE-GASPARD - DETECTOR CELL - Prototype

<section-header>

DSSSD 20 μ m (32 \times 32)

Micronsemiconductors Ltd.

Centro Nacional de Microelectrónica (CNM), Barcelona (Spain)


DSSD production

- NTD 500um
- Interstrip gap: 90um
- •Strip pitch: 390um
- •DC coupled
- •128 strips on each side
- •Electrode strip material: Al (100nm).
- •Biased guard ring: 300um wide
- •Floating rings: 3
- •P-stop isolation for n-side strips.
- •Strip length: 49830um
- •Angle between n and p strips 90°.

SQUARE: 54.2 x 54.2 mm

TRAPEZODIAL: 96.4 x 61.5 x 96.7 mm/ strip pitch 1mm

PARTICLE IDENTIFICATION: DE-E vs PSA

HYDE - GASPARD DETECTOR CELL - Prototype

4-Layer prototype (~62 × 62 mm2)

• NTD-20 μm 32 strip/side (*PSA*, ΔE, E).

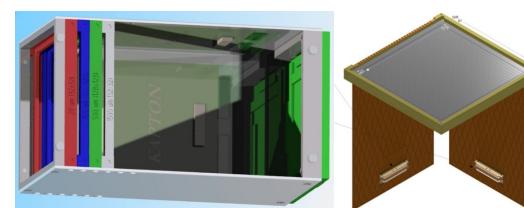
- NTD-100 µm 128 strip/side (*PSA*, ΔE, E).
- FZ-500 μm 128 strip/side (PSA, ΔE, E).
- FZ-1.5 mm stack 32 strip/side (ΔE , E).
- 640 electronic channels/cell.

(128 x 128, 0.4 mm pitch, $\delta\theta\sim 0.1^o$)

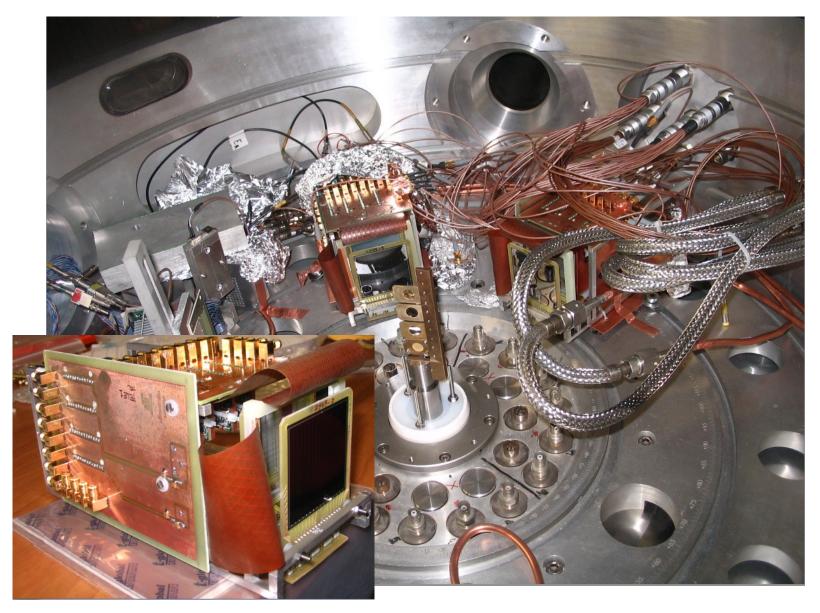
DE/E TOF & PSA: on the 20 or 100 um layer.

HYDE-GASPARD Test bench

TEST program TRACE-HYDE-GASPARD: LNS (Catania, Italy) ~ 4He & 12C + CH/Au @ 60 AMeV 9-13 July 2012


LNL (Legnaro, Italy) ~ 160+325i@150MeV

October-December 2012


PSA: PACI + MATACQ (2 GS/s, 12-14 bits) UHU-CEA-GANIL

Identification of particles (Z & A) for $1 \le Z \le 21$. Detectors thickness: 20, 100 µm. Optimum sampling rate.

TANDEM/ALTO (Orsay, France) ~ 1H, 2H & 12C + CH/Au , February 2012

I. MARTEL, Univ. Huelva

Front-end electronics

HIGH DENSITY FEE//KRAKOV-UHU

PREA

MP

Q,I

Feedtr

ough

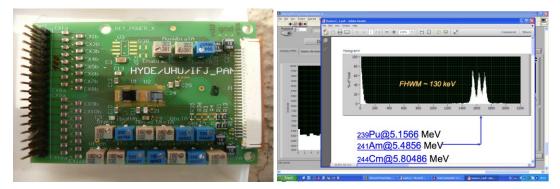
DSSD

- First test board with VA-TA chips (IDEAS-Norway)

PSA ASIC

ST

ASIC


- Hybrid equipped with Readout board (ADC and dedicated XILINX SPARTAN FPGA).

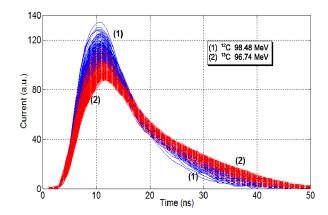
- Readout frequency, 4 MHz clk. (8 μs for 32 channels)

- Dead time for 1 KHz event rate per detector is estimated to be around 0.8%.

- Power dissipation is around 100 mW per hybrid.

- However Eres~130 keV \rightarrow design dedicated ASICs

FPGA implementation of PSA using neural networks


Configuration parameters

Neurons per MLP: 2 Architecture: 8x8x2 layers Data size: 14 bits

No. MLP in FPGA: 8 Device: Spartan3AN-700

Maximum operation frequency: 74 MHz

R. Jímenez-Naharro et al., NIMA 54210

The Linac Research Facility (LRF)

User oriented facility for producing intense HEAVY ION BEAMS for basic research on nuclear physics and applications. UNIVERSITY FACILITY (→students/masters/PhDs/etc).

→ OPEN INTERNATIONAL COLLABORATION ←

http://www.uhu.es/gem/LRF/

High intensity superconducting linac.

- Wide range of heavy ions
- Wide range of energies, from keV/u ~15 MeV/u
- Maximum intensity for HI (~100uA, ⁴⁰Ar)
- protons up to 30 MeV (~1 mA); up to 70 MeV (nA)

PROGRAM: Basic nuclear physics

- Nuclear reactions and spectroscopy with stable, high intensity, beams:
 - \rightarrow European ECOS initiative for high energy accelerators:

Super-heavy & Nuclear astrophysics → long periods of beam time demanded Nuclear structure studies at low medium and high-spin Clusters and molecules in nuclei Ground-state properties Near barrier transfer and fusion

IGISOL type ion source: stopped beams (beta-decay, beta-particle, masses, etc).

Radioactive beam line: the IGISOL beam production with low radioactive waste

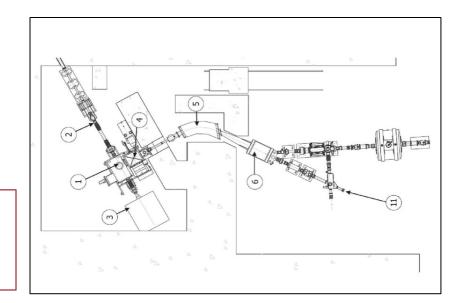
Isotope production and extraction pioneered at Jyvaskyla (J. Aysto et al.)

Ion source

He gas jet Ion guide Acceleration voltage ~40 kV

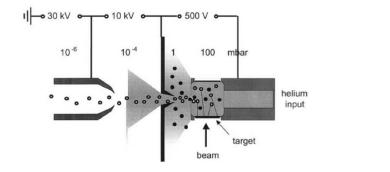
Mass separator

Analyzing magnet Mass resolving power: ~700


1 30 kV --0 10 kV 0 • 500 V 10-6 10-4 100 helium input target

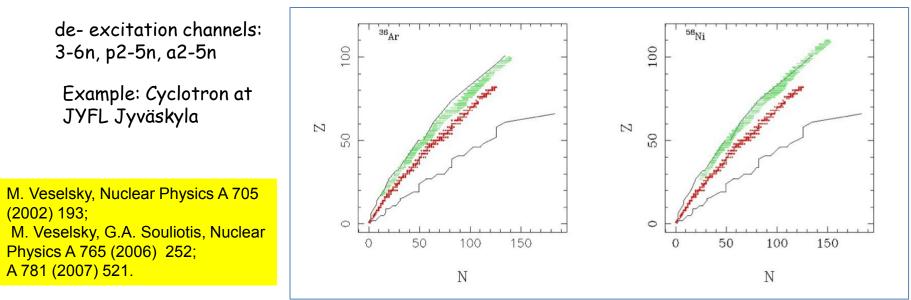
Detection setup

Tape station beta, gamma-gamma, Ge, Si(Li), BaF2


Physics program with radioactive beams:

- DECAY SPECTROSCOPY
- MASS MEASUREMENTS
- FUNDAMENTAL INTERACTIONS

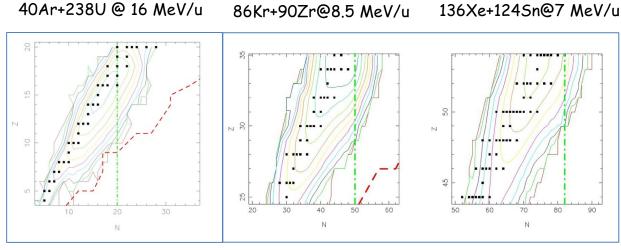
de Huelva



LINAC RESEARCH FACILITY

Exotic beams:	possibilities
Typical beams	Height of the Coulomb barrier ~ 4 to 5 MeV/nucleon
40Ar ~ 14 MeV/u 86Kr ~ 8.5 MeV/u	Exotic isotope production:
84Kr ~ 10 MeV/u 136Xe ~ 7 MeV/u	→ compound nucleus reactions ~ Eb → proton rich → reactions of nucleon exchange > Eb → neutron rich
Compound nucleus reaction	ons ~ Eb -> Basic mechanism for production of proton rich nucle

or production of proton rich nuclei


Accessible regions of the proton rich nuclei (green), which can be produced using proton rich ion beams such as 36Ar (left) and heavier ions 58Ni (right) in the compound nucleus reactions. Red region represents stable target nuclei. Lines represent the proton and neutron driplines.

Cortesy of M. Veselsky

Production of neutron rich nuclei

-preferably "cold" processes with minimum neutron loss. \rightarrow Reactions of heavy ions with energies around > 10 MeV/u

closed neutron shell N=20.

Cortesy of M. Veselsky

Example (Vamos, GANIL):

- intensity of 0.1 puA
- target thickness 50 mg/cm2
- \rightarrow production around 10 nuclei per second

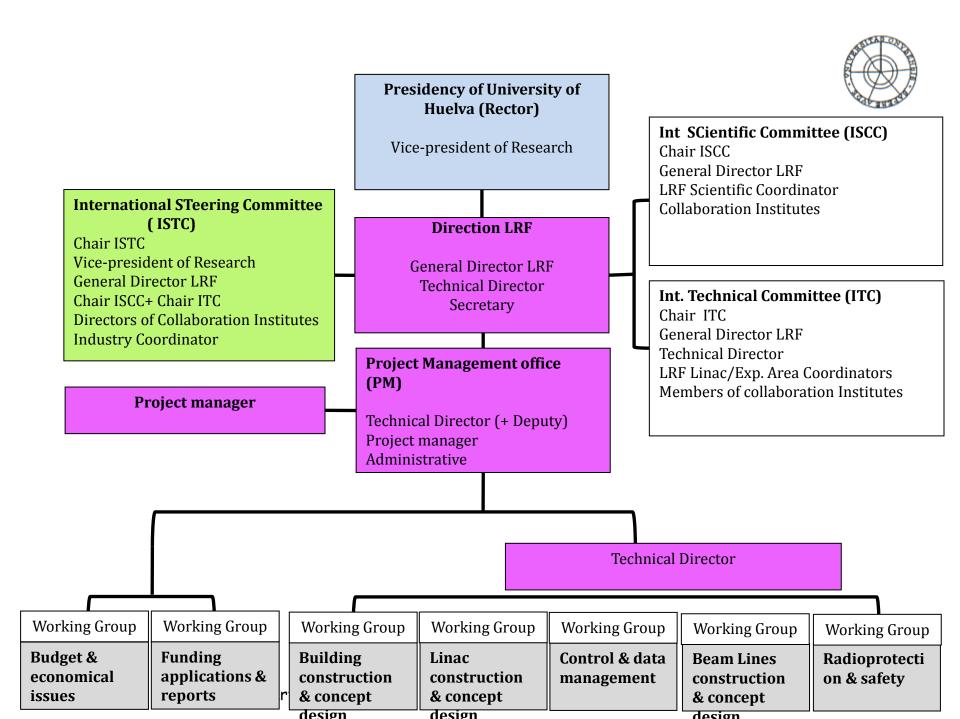
For present facility, 10 puA → 10**3 pps on target!!!

APPLICATIONS

ightarrowProject driven by applications and industry: Science & Technology Park -PCTH

- -Modern radio-isotope production (heavies: Mo, I, Sc, Se, ...)
- -Medicine (branchiotherapy; dosimetry, proton therapy)
- -Material research for energy (Fusion energy, solar cells, ...)
- -Aerospace
- -lon implantation

-Applications impose very demanding beam intensities and energies


→basic research

LRF ORGANIZATION (TODAY):

- PART of a Research Centre of the University of Huelva, "CENTER FOR ENERGY RESEARCH"
- -Research groups (~ 60 staff)
- -Technical staff (~ 6 staff)
- Also lecturing activity (Postgraduate)
- Participation of PCTH (State of Andalucía, industrial partners & other companies)
- Budget (Personnel, running costs, etc):
 - University (Staff + Project overheads)
 - Funding grants: Andalucía, Spain, European Union.

EUROPEAN UNION ERDF PROGRAM: European Regional Development Funds

- UNDEVELOPED REGIONS OF EUROPE (HUELVA)
- EU: > 75 % COST SUPPORT OF INFRASTRUCTURE
- PARTICIPATION OF SPANISH INDUSTRY

INDUSTRY FUND.		Meur	2011	2012	2013	2014	2015	2016	2017
INNPLANTA	Buildings	10.8							
INNPLANTA	LINAC	15.4							
INNTERCONECTA	R&D	1.4							
INNPLANTA	Fusion technology	7.1 ??							
?? 2012 ??	Commissioning +??	??							

LRF- CONSTRUCTION PHASES

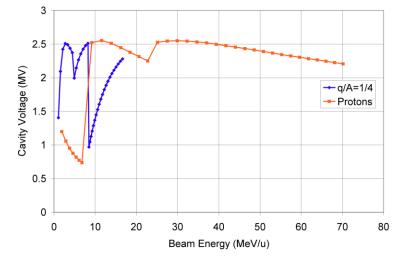
Parameter	Value	COST/Time	Comments
Ion Species	Heavy ions, protons		SCR ion source
Current Range	~1-2 mA (protons) ~ 500uA – 10 uA HI		HI intensities depends strongly on Q/A
PHASE 1	20 MeV protons 9 MeV/u HI	15.4 Meur ~3-4 years	Auxilliary, Cryogenics, Ion source, LEBT, RFQ, 2 x cryomodules (7 x SC), 2 beam lines
PHASE 2	55 MeV protons 15 MeV/u HI	5 Meur 2 years	2 x Cryomodule, Ext. Cryogenics, full experimental hall, IGISOL
PHASE 3	72 MeV protons 18 MeV/u HI	3 Meur 1 year	1 x Cryomodule, proton therapy line

PRELIMINARY LINAC PARAMETERS AND CONFIGURATION

LRF-Huelva calculation (P. Ostroumov, ANL)

Specifications:

- High intensity Heavy ion accelerator up to 15 MeV/u (40Ar 200uA, 130Xe 10 uA)

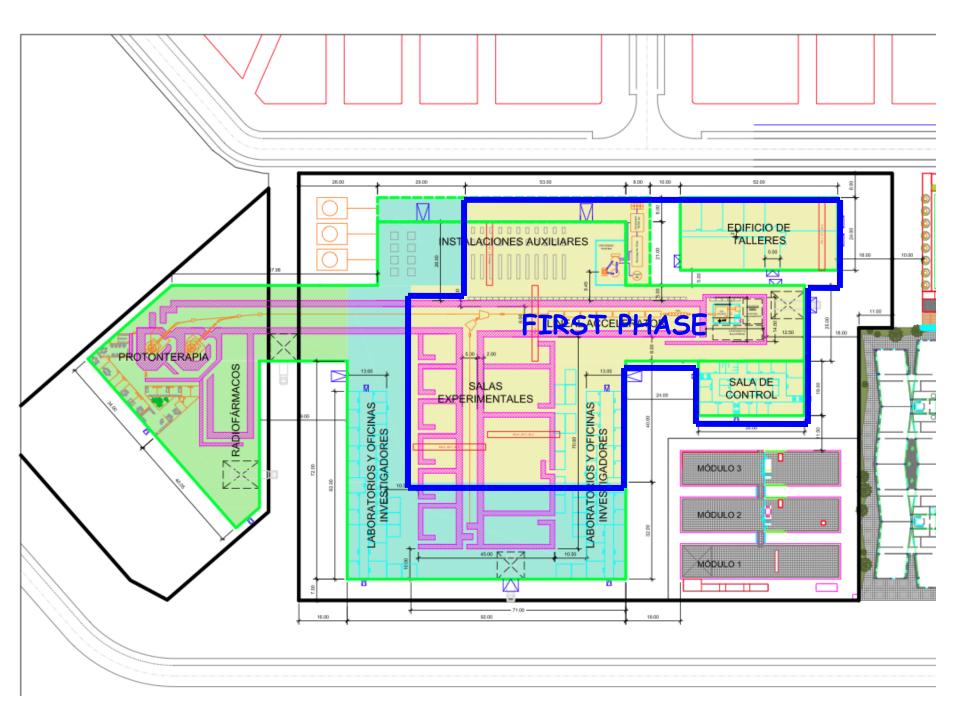

- H, D 1mA, 30 MeV; H, 1uA 72 MeV

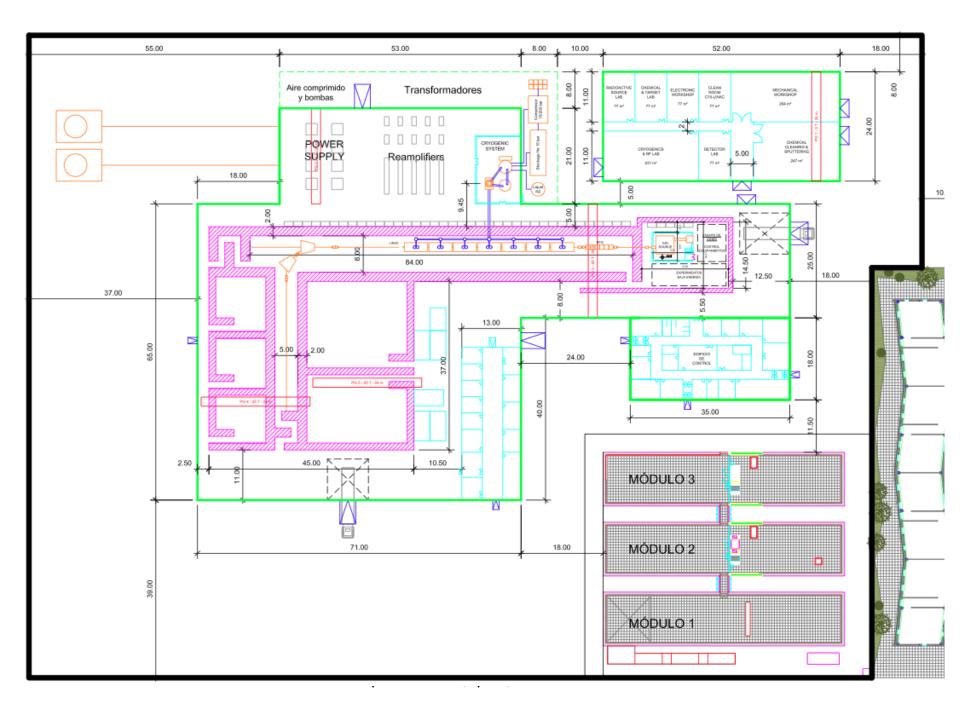
 \rightarrow limited by ECR ion source

Configuration :

- Ion source + Low Energy Beam Line
- 400 kV HV platform \rightarrow (ion implantation & LE astrophysics)
- MBH: Multi Harmonic Buncher
- RFQ: "Radio Frequency Quadrupole" accelerator (injector)
- 35 SC cavities

Table 5. Main parameters of the Linac									
	Frequency, MHz	β _{OPT}	Number	Comments					
			of cavities						
MHB*	36.375 (the 1 st harmonic)	N/A	1						
RFQ	72.75	N/A	1	Based on ANL 60.625 MHz RFQ					
QWR1	72.75	0.077	7	Design is available as					
				ANL/ATLAS upgrade					
				cryomodule					
QWR2	109.125	0.15	7	Design is available as					
				ANL/ATLAS upgrade					
				cryomodule					
HWR	181.875	0.25	14	Prototype cavity (f=170 MHz)					
				was demonstrated at ANL					


ION INTENSITIES


Wide range of ions 2 high intensity: Commercial options/ ECR ion source (Pantechnik).

lon s/Q	1+	2+	4+	6+	8+	9+	11+	14+	20+	23+	25+	26+	27+	30+	31+	32+
Н	2000															
H ₂	1000															
Нз	700															
He	2000	1000														
С	500	350	200	3												
N	1000	300	100	10												
0	1000	400	300	200												
Ne	1000	300	200	160	25											
Ar	1000	350	250	200	200	90	30	1								
Kr	1000						25	15								
Ag			250	250	200	90	30		4							
Xe	500				220				15	14	10	5				
Та									4	0.8						
Au												10	6	1	0.7	0.2
РЬ									10		5	3	1			

Summary & Conclusions

A new superconducting high-intensity heavy-ion linac is being build at University of Huelva:

- High Intensity Superconducting Linac as base design (from the beginning)
- Using most modern SC technology (ANL, Spiral2, LNL, ...)
- Large range of ions: from H up to Pb
- High intensities: 200uA 40Ar,

→ECOS facility for high intensity beams →Test facility for future high intensity accelerators

International collaboration:

ANL - Chicago, USA CEA-Saclay, France CENBG - Bordeaux, France CIEMAT-Madrid, Spain CMAM-Madrid, Spain CNA-Seville, Spain CSIC-Madrid, Spain FSU-Tallahasee, USA FLNR-Dubna, Russia GANIL-Caen, FranceGSI-Darmstadt, Germany Hospital JRJ-Huelva, Spain HIL-Warsaw, Poland IFIC-Valencia, Spain ISOLDE/CERN-Geneva, Switzerland IPN-Orsay, France KU-Leuven, Belgium LNL-Leñaro, Italy LNS-Catania, Italy ORNL-Tenneesee, USA RBI-Zagreb, Croatia Univ. Birmingham, UK Univ, Complutense-Madrid, Spain Univ. Edimburg, UK Univ. Granada, Spain Univ. Huelva, Spain Univ. Ioannina, Greece Univ. Jyväskylä - JYFL, Finland Univ. Padua, Italy Univ. Salamanca, Spain Univ. Seville, Spain Univ. UNED-Madrid, Spain Univ. UPV-Bilbao, Spain Univ. Surrey, UK Univ. York, UK (...)

→ OPEN COLLABORATION