SAMURAI TPC:
A Time Projection Chamber to Study the Nuclear Symmetry Energy at RIKEN-RIBF with Rare Isotope Beams

Alan B. McIntosh and TadaAki Isobe
For the SAMURAI-TPC Collaboration
SAMURAI
Time Projection Chamber

• Physics Motivation
 – Symmetry Energy, Observables & Measurement

• Conceptual Design & Fabrication

• Simulated TPC Performance

• Experimental Program at RIBF

• Summary
Primary Physics Goal:

Constrain the Nuclear Asymmetry Energy

- Nuclear EOS: Impacts heavy-ion collisions, supernovae, neutron stars...
- Largest uncertainty: Density dependence of the asymmetry energy

Heavy-ion collisions, 200-300A MeV, rare isotope beams:
- $^{105}\text{Sn} + ^{112}\text{Sn}$, $^{132}\text{Sn} + ^{124}\text{Sn}$, $^{36}\text{Ca} + ^{40}\text{Ca}$, $^{52}\text{Ca} + ^{48}\text{Ca}$, and others

Measure differential flow and yield ratios for ($\pi^+ \& \pi^-$), (p & n), ($^3\text{H} \& ^3\text{He}$)

In addition to constraining the symmetry energy, we are sensitive to nucleon effective masses and in-medium nucleon cross sections at $\rho \approx 2\rho_0$.

\[S(\rho) \quad \text{(MeV)} \]

\[L \quad \text{(MeV)} \]

\[S_0 \quad \text{(MeV)} \]

M.B. Tsang et al., PRC 86, 015803 (2012)
Experimental setup

Detector Suite
- SAMURAI TPC
- NEBULA neutron detector array
- Hodoscope for heavy residues
- Space is available for ancillary detectors
 - TPC is thin-walled
How the TPC works

- Charged particles ionize gas inside
 - Ionized electrons drift toward pad plane
- Signal from electrons detected on pads
 - Positions and time of arrival → 3D path
- Infer momentum from curvature of particle tracks in magnetic field
- Particle type from energy loss and magnetic rigidity

Figure courtesy of J. Estee

Figure courtesy of J. Barney
SAMURAI TPC: Exploded View

Overall: 2m x 1.5m x .75m

- **Rigid Top Plate**
 - Primary structural member, reinforced with ribs.
 - Holds pad plane and wire planes.

- **Field Cage**
 - Defines uniform electric field.
 - Contains detector gas.
 - 1.5m x 1m x .5m

- **Pad Plane (108x112)**
 - Used to measure particle ionization tracks

- **Voltage Step-Down**
 - Prevent sparking from cathode (20kV) to ground

- **Thin-Walled Enclosure**
 - Protects internal components, seals insulation gas volume, and acts as major structural member

- **Target Mechanism**

- **Calibration Laser Optics**

- **Rails**
 - Inserting TPC into SAMURAI vacuum chamber
Rigid Top Plate
Primary structural member, reinforced with ribs. Holds pad plane and wire planes.

Field Cage
Defines uniform electric field. Contains detector gas.

Pad Plane (108x112)
Used to measure particle ionization tracks

Voltage Step-Down
Prevent sparking from cathode (20kV) to ground

Thin-Walled Enclosure
Protects internal components, seals insulation gas volume, and acts as major structural member

Rails
Inserting TPC into SAMURAI vacuum chamber

Front End Electronics
Liquid Cooled

Target Mechanism

Calibration Laser Optics
beam

Overall: 2m x 1.5m x .75m
SAMURAI TPC Top plate fabrication

- **Top plate**: pad plane and wire planes mounted on bottom
- **Ribs**: cross-braces to prevent bowing/flexing

Holes for pad plane readout

Connector prototype

- Cable to FEE card
- Spring loaded connection to pad plane through lid
- "lid"
- "pad plane"

Holes for electronic-card cooling lines
SAMURAI TPC: Exploded View

Overall: 2m x 1.5m x .75m

- **Rigid Top Plate**
 - Primary structural member, reinforced with ribs.
 - Holds pad plane and wire planes.

- **Pad Plane (108x112)**
 - Used to measure particle ionization tracks

- **Field Cage**
 - Defines uniform electric field.
 - Contains detector gas.

- **Voltage Step-Down**
 - Prevent sparking from cathode (20kV) to ground

- **Thin-Walled Enclosure**
 - Protects internal components, seals insulation gas volume, and acts as major structural member

- **Target Mechanism**
 - Calibration Laser Optics

- **Rails**
 - Inserting TPC into SAMURAI vacuum chamber
SAMURAI TPC Enclosure fabrication

- Aluminum, plus Lexan windows
- **Skeleton**: Angle bar, welded and polished for sealing.
- **Sides & Downstream Walls**: framed aluminum sheet, to minimize neutron scattering
- **Bottom Plate**: Solid, to support voltage step-down
- **Upstream Plate**: Solid, ready for beamline coupling hole to be machined
Manipulating the TPC (0.6 ton)

Configuration A
Hoist beams bolted to TPC
No relative motion
TPC moves as one - simple lifting/ lowering

Configuration B
TPC suspended from hoist beams with straps
TPC can be rotated 360
Allow to pass through standard doors

Configuration C
Motion chassis mounted upside-down
Acts as a table for wire winding, etc.
SAMURAI TPC Manipulation

Motion Chassis and Hoist Beams work as designed. The TPC Enclosure can be lifted and rotated with relative ease.
SAMURAI TPC: Exploded View

Overall: 2m x 1.5m x .75m

- **Rigid Top Plate**
 - Primary structural member, reinforced with ribs.
 - Holds pad plane and wire planes.

- **Pad Plane (108x112)**
 - Used to measure particle ionization tracks

- **Field Cage**
 - Defines uniform electric field.
 - Contains detector gas.

- **Voltage Step-Down**
 - Prevents sparking from cathode (20kV) to ground

- **Thin-Walled Enclosure**
 - Protects internal components, seals insulation gas volume, and acts as major structural member

- **Target Mechanism**

- **Calibration Laser Optics**

- **Beam**

- **Rails**
 - Inserting TPC into SAMURAI vacuum chamber
Field cage

- Made of printed circuit board
- Thin walls for particles to exit
- Gas tight (separate gas volumes)

Enclosure FC wall

Pad plane anode wires

Beam direction

Cathode (9-20kV)

Voltage step down

GARFIELD calculations (on scaled field cage) show uniform field lines 1cm from the walls

Calculations courtesy of F. Lu
SAMURAI TPC: Exploded View

Overall: 2m x 1.5m x .75m

- **Rigid Top Plate**: Primary structural member, reinforced with ribs. Holds pad plane and wire planes.
- **Pad Plane (108x112)**: Used to measure particle ionization tracks
- **Field Cage**: Defines uniform electric field. Contains detector gas.
- **Voltage Step-Down**: Prevent sparking from cathode (20kV) to ground
- **Thin-Walled Enclosure**: Protects internal components, seals insulation gas volume, and acts as major structural member
- **Rails**: Inserting TPC into SAMURAI vacuum chamber

Front End Electronics
- Liquid Cooled

Target Mechanism

Calibration Laser Optics

beam

Pad plane

Full pad plane
- Mounted on bottom of lid
- 112 x 108 = 12096 pads
- Each pad: 12mm x 8mm
- Fabrication underway

Pad plane unit cell (192 in full plane)
- Capacitance: 10pf pad-gnd, 5pf adjacent pads
- Cross talk:
 - ~0.2% between adjacent pads
 - <0.1% between non-adjacent pads

Cable connection to STAR FEE card
Spring loaded connection to pad plane through lid
Mock up of lid and pad plane
Wire planes – mounting (test setup)

- Wires are strung across frame
- Frame is positioned so that wires pass through teeth of comb and rest on circuit board (CB)
- Comb sets pitch, CB sets the height
- After gluing and soldering wires to CB, wires are cut and frame removed

![Diagram of mounting setup](image)
Rigid Top Plate
Primary structural member, reinforced with ribs. Holds pad plane and wire planes.

Field Cage
Defines uniform electric field. Contains detector gas.

Pad Plane (108x112)
Used to measure particle ionization tracks

Voltage Step-Down
Prevent sparking from cathode (20kV) to ground

Thin-Walled Enclosure
Protects internal components, seals insulation gas volume, and acts as major structural member

Rails
Inserting TPC into SAMURAI vacuum chamber

Front End Electronics
Liquid Cooled

Calibration Laser Optics
beam

Target Mechanism

Overall: 2m x 1.5m x .75m
Voltage step down

- Glued to recess in bottom plate
- Consists of 9 concentric copper rings with decreasing voltage from cathode to ground

VSD prototype: tested fabrication of rings, stability, and sparking
→ Full VSD fabrication underway

Bottom plate

36 cm
22 cm

Ground (end of VSD)

Cathode side: 9-20kV (used 10kV for test of 4 rings out of 9)
Laser Calibration System

Litron Laser
266nm
15 mJ / pulse (10Hz)
SAMURAI
Time Projection Chamber

• Physics Motivation
 – Symmetry Energy, Observables & Measurement
• Conceptual Design & Fabrication
• Simulated TPC Performance
• Experimental Program at RIBF
• Summary
TPC electronics
Nuclear matter in neutron stars investigated by experiments and astronomical observations

- The study of neutron star matter is elected as "Grant-in-Aid for Scientific Research on Innovative Areas" five year project.

Astrophysical approach

Towards the science of QCD matter

```
X線天文衛星
ASTRO-H

D: 理論

“クォーク物質科学”の構築

中性子星全体の内部構造の解明

核物質状態方程式(EOS)の確立

B: 中性子過剩核物理

冷却原子ガス

⇒ 中性子過剩核物質の性質

大強度陽子加速器
J-PARC

A: ストレンジネス核物理

⇒ 中性子星内の様々な粒子（ストレンジ粒子）の間の力

C: X線天文観測

⇒ 中性子星の半径

日本が誇る
世界最高の2大加速器
と天文衛星

RIBF

不安定原子核工場

不連携

“Laboratory-Observatory-Theory”

地上実験—天体観測—理論

Strangeness
nuclear physics

SAMURAI-TPC
```
Novel TPC readout electronics: GET

- New ASIC chip (AGET) Preamp+Shaper+SCA (512 cells)
- Conversion with 12-bit ADC
- Channel by channel discriminator
- DAQ rate of more than 1kHz

- R&D by GET (General Electronics for TPC) Collaboration for next generation of readout electronics.
 - Production will start soon.
- Make it possible to readout 12-bit ADC 512 samples from 12000 pads under 1kHz DAQ rate.
Selective digitization: improvement of DAQ rate limit

- Digitize only the channel with hit register.
 - Most of the TPC channel have pedestal data.
 - \(\rightarrow\) loss of conversion time
- Rate at 512 time-bins and 8 hit channels: 4500 Hz
It needs modern computing infrastructure like high energy experiments

- On the assumption of 1kHz DAQ rate:
 - Data production rate is estimated to be 3.2GByte/sec without zero-suppression.
 - It would be ~320MByte/sec on the assumption of 10% data reduction after zero-suppression.
 - 188TByte/week

- TPC detector response time limits the DAQ trigger rate.
 - We design the TPC as the acceptable rate of 20kHz beam in total.
 - 50cm drift length, 5cm/μsec drift velocity, 10μsec drift time. → 10^5 at most.
 - 400Hz trigger rate for minimum bias trigger.
 - Assume 2% collision rate target.

- 12 ASIC & ADC boards
- 12 Control boards
- 4 DAQ servers
- 10Gbps Computing farm
Simulation study of basic TPC performance

– We intend to measure:
 • π^+, π^-
 • Neutron, Proton
 • $^3\text{H}, ^3\text{He}$
 • Flow of each particles

Performances on
 • Impact parameter measurement
 • Reaction plane measurement
 • Charged particle tracking

are important.
Event display of HIC

- Deposited energy on each readout pads.
 - Tracks by light ions can be seen

GEANT simulation
$^{132}\text{Sn} + ^{124}\text{Sn}$ collisions at E/A = 300 MeV

PHITS-2.15 $^{124}\text{Sn} + ^{124}\text{Sn}$ E = 340 MeV/u
Single track performance with simple algorithm: track finding with Kalman filter

- Currently it is easy to measure:
 - pion $p>80\text{MeV}/c$
 - proton $p>100\text{MeV}/c$
 - Still room to improve for low-momentum particles.
- Momentum resolution: $\sim2\%$
Low-momentum pions

- Helical track is difficult to reconstruct with current algorithm.
- Different algorithm to connect two low-momentum tracks is invented.

Deposited energy on each readout pads.
Performance on low-momentum pions

Reconstructed pion momentum vs. primary pion momentum

Momentum resolution of low-momentum pions

Possible to track the low-momentum pions of $p>15\text{MeV/c}$ ($\sim 7\text{MeV/c in c.m.}$).

Genie Jhang
TPC PID performance

Single particle

\[\frac{dE}{dx} \] resolution
- pion@140MeV/c: single:13.3% → min. bias: 16%
- proton@210MeV/c: single:12.7% → min. bias: 14%

Contribution from low-momentum pion can be seen even in HIC.
Flow: Reaction plane resolution

- Large acceptance detector is preferable.
- High multiplicity collision is better in terms of good reaction plane resolution.
 - Higher Z RI is better.
- Measurement in Sn+Sn needs ~x2.5 larger statics than that in Au+Au.
Experiment at RIBF

Acceleration of ions up to 345 MeV/u

Fragmentation

Analyze what is coming

Heavy RI collision!
Experimental setup

• Plan first run in 2014.
• Auxiliary detectors for heavy-ions and neutrons, and trigger
Commissioning Experiment March 2012
SAMURAI-NEBULA

Neutron-detection system for Breakup of Unstable-Nuclei with Large Acceptance

• Design
 – 240 Neutron counters
 – 48 VETO counters
 – arranged into 4 stacks
• Detection efficiency~40% for 1n (Currently)
• Large acceptance
 – 3.6m (H) x 1.8m (V) effective area
Available beam at RIBF

- 18O, 48Ca, 70Zn, 124Xe and 238U primary beam.

- Fragmentation process for 2ndary RI beam production through Be or Pb primary target.
 - Mainly Uranium is used for making heavy neutron rich beams.

- It is possible to scan isotopes for wide range.
 - 108Sn, 112Sn, 124Sn and 132Sn.
 - Useful for the study of other nuclear effect.

238U 350AMeV 0.2pnA on 600mg Be target

10^6pps
\[{^{132}\text{Sn}}: \quad \frac{N}{Z} = 1.64 \]
\[\delta = 0.24 \]

- From U primary beam: 345AMeV 5pnA
- 270 MeV/u, 1200cps, and purity of 12% \(^{132}\text{Sn}\) beam was made at last in-beam gamma experiment.
- Rough LISE++ calculation shows ~3000cps, 30% purity, 300 MeV/u \(^{132}\text{Sn}\) is possible to be made at RIBF.
- My question: other contaminations are useless??

PID plot at in-beam gamma experiment
Optimized not for \(^{132}\text{Sn}\)
Application of SAMURAI-TPC to other experiments.

• Only for HIC experiments?
 – Any suggestions are welcome.

• Forward angle inelastic scattering experiment?
 – Measurement of Giant monopole resonance.

• Inverse kinematics in the case of RI.
 → Active target TPC.
 – Use TPC gas as target as well as TPC volume.
 – Low-pressure volume to gain range.
 • 4He recoil energy at 0.5 degree (c.m.s.) is only 0.27MeV for 68Ni at 100 MeV/u.
 – Internal trigger with GET electronics.

ρ=28cm for E=1MeV proton B=0.5T
Summary

• TPC for use within the SAMURAI dipole magnet at RIKEN, Japan
 – Complete: Top Plate & Structural Ribs, Enclosure Frame and Sealing Plates, Motion Chassis and Hoisting Beams
 – Fabrication underway: Pad planes, field cage, voltage step down
 – Construction expected to finish in 2012; delivery to RIKEN 2013
• Dedicated electronics development in progress
• TPC Performance is simulated toward first experiment
 – Low energy thresholds are essential
• Experimental program at SAMURAI to begin in 2014

Acknowledgements

J. Barneyc, Z. Chajeckic, C.F. Chanc, S. Dyeb, M. ElHoussienyb,
J. Esteec, M. Famianob, B. Hongf, G. Jhangf, J. Gilbertc, T. Isobed, F. Luc, W.G. Lynchc,
A.B. McIntosha, T. Murakamie, H. Sakuraid, R. Shanec, C. Snowb, A. Taketanid,
S. Tangwancharoenc, M.B. Tsangc, S.J. Yennelloa

aTexas A&M University, bWestern Michigan University, cNSCL Michigan State University,
dRIKEN, Japan, eKyoto University, fKorea University