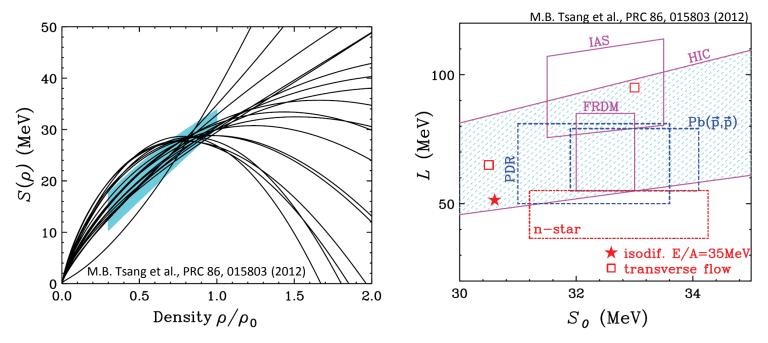


SAMURAI TPC: A Time Projection Chamber to Study the Nuclear Symmetry Energy at RIKEN-RIBF with Rare Isotope Beams

Alan B. McIntosh and TadaAki Isobe For the SAMURAI-TPC Collaboration

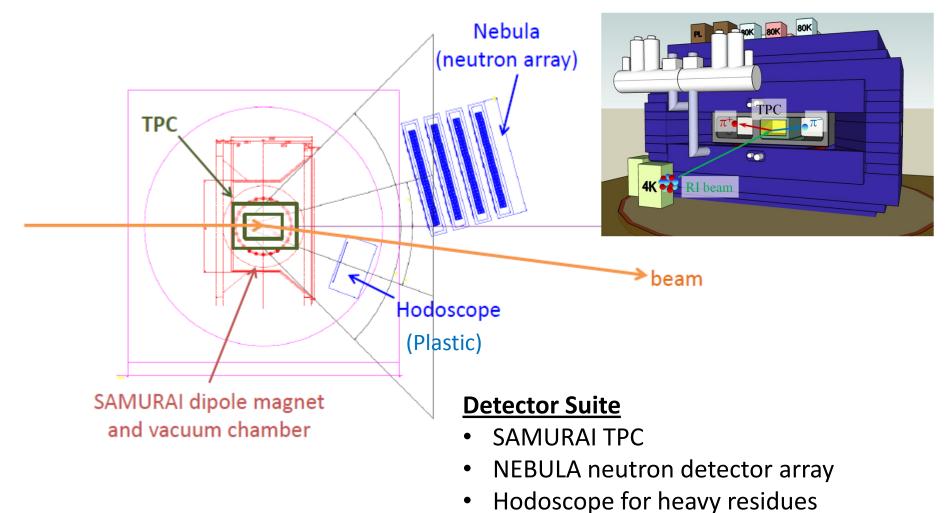
SAMURAI Time Projection Chamber

• Physics Motivation


– Symmetry Energy, Observables & Measurement

- Conceptual Design & Fabrication
- Simulated TPC Performance
- Experimental Program at RIBF
- Summary

Primary Physics Goal:


Constrain the Nuclear Asymmetry Energy

- Nuclear EOS: Impacts heavy-ion collisions, supernovae, neutron stars...
- Largest uncertainty: Density dependence of the asymmetry energy

- Heavy-ion collisions, 200-300A MeV, rare isotope beams:
 - 105 Sn + 112 Sn, 132 Sn + 124 Sn, 36 Ca + 40 Ca, 52 Ca + 48 Ca, and others
- Measure differential flow and yield ratios for $(\pi^+ \& \pi^-)$, (p & n), (³H & ³He)
- In addition to constraining the symmetry energy, we are sensitive to nucleon effective masses and in-medium nucleon cross sections at $\rho \approx 2\rho_0$.

Experimental setup

- Space is available for ancillary detectors
 - TPC is thin-walled

How the TPC works

- Charged particles ionize gas inside
 - Ionized electrons drift toward pad plane
- Signal from electrons detected on pads
 - Positions and time of arrival \rightarrow 3D path
- Infer momentum from curvature of particle tracks in magnetic field
- Particle type from energy loss and magnetic rigidity

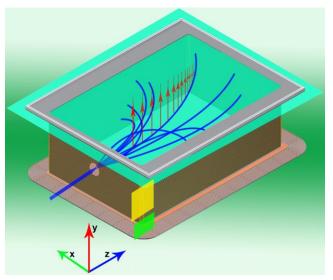


Figure courtesy of J. Estee

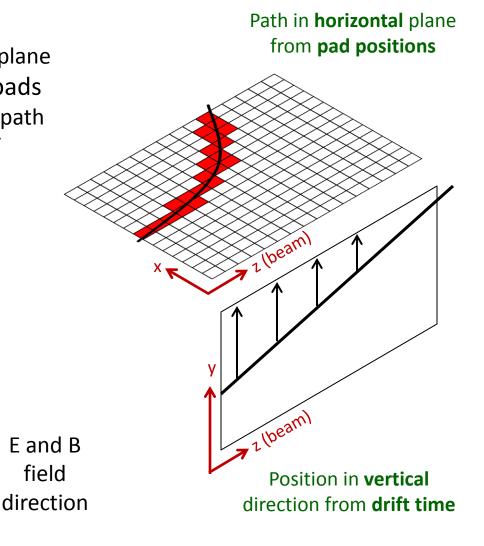


Figure courtesy of J. Barney

SAMURAI TPC: Exploded View

Overall: 2m x 1.5m x .75m

Front End Electronics

<u>Field Cage</u> Defines uniform electric field. Contains detector gas. 1.5m x 1m x .5m

beam

Calibration Laser Optics

Target Mechanism

Rigid Top Plate

Primary structural member, reinforced with ribs. Holds pad plane and wire planes.

<u>Pad Plane</u> (108x112) Used to measure particle ionization tracks

<u>Voltage Step-Down</u> Prevent sparking from cathode (20kV) to ground

Thin-Walled Enclosure Protects internal components, seals insulation gas volume, and acts as major structural member

<u>Rails</u>

Inserting TPC into
SAMURAI vacuum
chamber

SAMURAI TPC: Exploded View

Overall: 2m x 1.5m x .75m

Front End Electronics

<u>Field Cage</u> Defines uniform electric field. Contains detector gas.

beam

Calibration Laser Optics

Target Mechanism

Rigid Top Plate

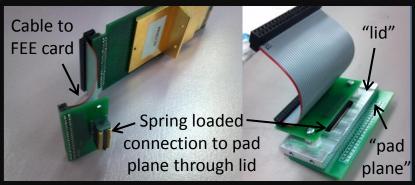
Primary structural member, reinforced with ribs. Holds pad plane and wire planes.

<u>Pad Plane</u> (108x112) Used to measure particle ionization tracks

<u>Voltage Step-Down</u> Prevent sparking from cathode (20kV) to ground

Thin-Walled Enclosure Protects internal components, seals insulation gas volume, and acts as major structural member

<u>Rails</u>


Inserting TPC into
SAMURAI vacuum
chamber

SAMURAI TPC Top plate fabrication

Holes for pad plane readout

Connector prototype

- Top plate: pad plane and wire planes mounted on bottom
- Ribs: cross-braces to prevent bowing/flexing

Holes for electronic-card cooling lines

SAMURAI TPC: Exploded View

Overall: 2m x 1.5m x .75m

Front End Electronics

<u>Field Cage</u> Defines uniform electric field. Contains detector gas.

beam

Calibration Laser Optics

Target Mechanism

Rigid Top Plate

Primary structural member, reinforced with ribs. Holds pad plane and wire planes.

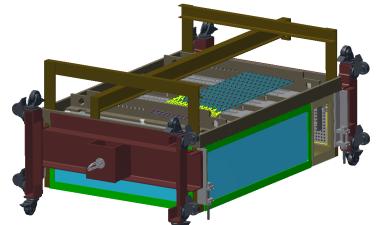
<u>Pad Plane</u> (108x112) Used to measure particle ionization tracks

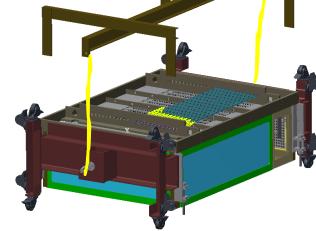
<u>Voltage Step-Down</u> Prevent sparking from cathode (20kV) to ground


Thin-Walled Enclosure Protects internal components, seals insulation gas volume, and acts as major structural member

<u>Rails</u>

Inserting TPC into
SAMURAI vacuum
chamber


SAMURAI TPC Enclosure fabrication


- Aluminum, plus Lexan windows
- **Skeleton**: Angle bar, welded and polished for sealing.
- Sides & Downstream Walls: framed aluminum sheet, to minimize neutron scattering
- Bottom Plate: Solid, to support voltage step-down
- Upstream Plate: Solid, ready for beamline coupling hole to be machined

Manipulating the TPC (0.6 ton)

Configuration A Hoist beams bolted to TPC No relative motion TPC moves as one - simple lifting/ lowering

Configuration B

TPC suspended from hoist beams with straps TPC can be rotated 360 Allow to pass through standard doors

Configuration C

Motion chassis mounted upside-down Acts as a table for wire winding, etc.

SAMURAI TPC Manipulation

Motion Chassis and Hoist Beams work as designed. The TPC Enclosure can be lifted and rotated with relative ease.

SAMURAI TPC: Exploded View

Overall: 2m x 1.5m x .75m

Front End Electronics

Field Cage Defines uniform electric field. Contains detector gas.

beam

Calibration Laser Optics

Target Mechanism

Rigid Top Plate

Primary structural member, reinforced with ribs. Holds pad plane and wire planes.

<u>Pad Plane</u> (108x112) Used to measure particle ionization tracks

<u>Voltage Step-Down</u> Prevent sparking from cathode (20kV) to ground

Thin-Walled Enclosure Protects internal components, seals insulation gas volume, and acts as major structural member

<u>Rails</u>

Inserting TPC into SAMURAI vacuum chamber

Field cage

Made of printed circuit board Thin walls for particles to exit ←6 mm strips Gas tight (separate gas volumes) ٠ [•]4 mm gaps Enclosure FC wall Pad plane : Decreasing anode wires Cathode voltage (9-20kV) Beam direction 1cm Calculations courtesy of F. Lu Cathode (9-20kV) Voltage step down **GARFIELD** calculations (on scaled field cage) show uniform field lines 1cm from the walls

SAMURAI TPC: Exploded View

Overall: 2m x 1.5m x .75m

Front End Electronics

<u>Field Cage</u> Defines uniform electric field. Contains detector gas.

beam

Calibration Laser Optics

Target Mechanism

Rigid Top Plate

Primary structural member, reinforced with ribs. Holds pad plane and wire planes.

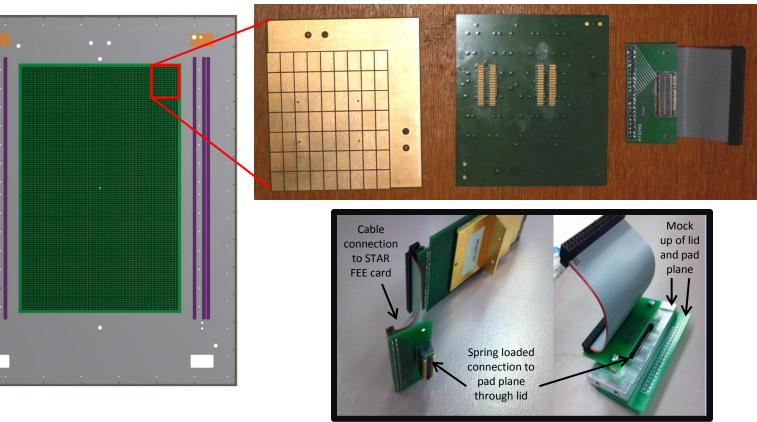
Pad Plane (108x112) Used to measure particle ionization tracks

<u>Voltage Step-Down</u> Prevent sparking from cathode (20kV) to ground

<u>Thin-Walled Enclosure</u> Protects internal components, seals insulation gas volume, and acts as major structural member

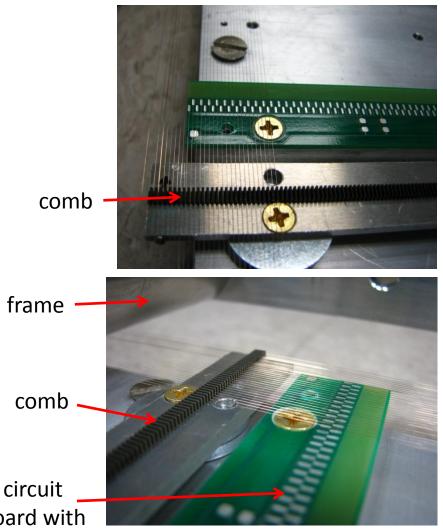
<u>Rails</u>

Inserting TPC into SAMURAI vacuum chamber


Pad plane

Full pad plane

- Mounted on bottom of lid
- 112 x 108 = 12096 pads
- Each pad: 12mm x 8mm
- Fabrication underway


Pad plane unit cell (192 in full plane)

- Capacitance: 10pf pad-gnd, 5pf adjacent pads
- Cross talk:
 - ~0.2% between adjacent pads
 - <0.1% between non-adjacent pads

Wire planes – mounting (test setup)

- Wires are strung across frame
- Frame is positioned so that wires pass through teeth of comb and rest on circuit board (CB)
- Comb sets pitch, CB sets the height
- After gluing and soldering wires to CB, wires are cut and frame removed

board with solder pads

SAMURAI TPC: Exploded View

Overall: 2m x 1.5m x .75m

Front End Electronics

<u>Field Cage</u> Defines uniform electric field. Contains detector gas.

beam

Calibration Laser Optics

Target Mechanism

Rigid Top Plate

Primary structural member, reinforced with ribs. Holds pad plane and wire planes.

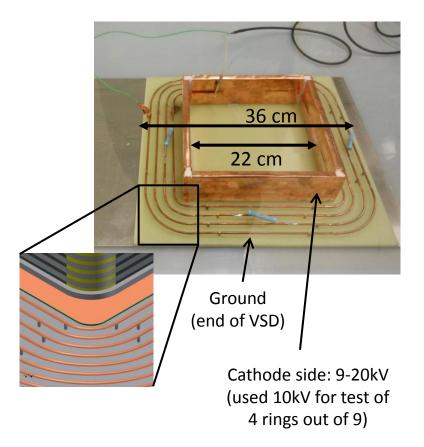
<u>Pad Plane</u> (108x112) Used to measure particle ionization tracks

<u>Voltage Step-Down</u> Prevent sparking from cathode (20kV) to ground

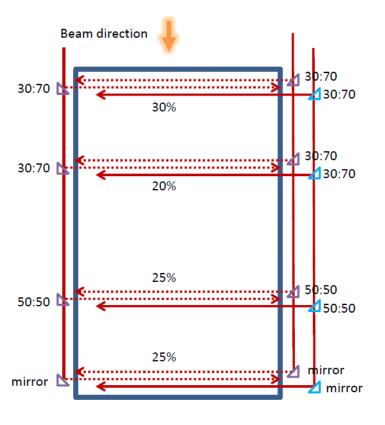
Thin-Walled Enclosure Protects internal components, seals insulation gas volume, and acts as major structural member

<u>Rails</u>

Inserting TPC into
SAMURAI vacuum
chamber


Voltage step down

- Glued to recess in bottom plate
- Consists of 9 concentric copper rings with decreasing voltage from cathode to ground



Bottom plate

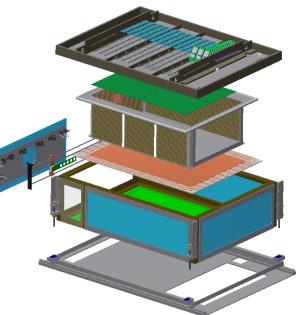
VSD prototype: tested fabrication of rings, stability, and sparking
→ Full VSD fabrication underway

Laser Calibration System



Top View

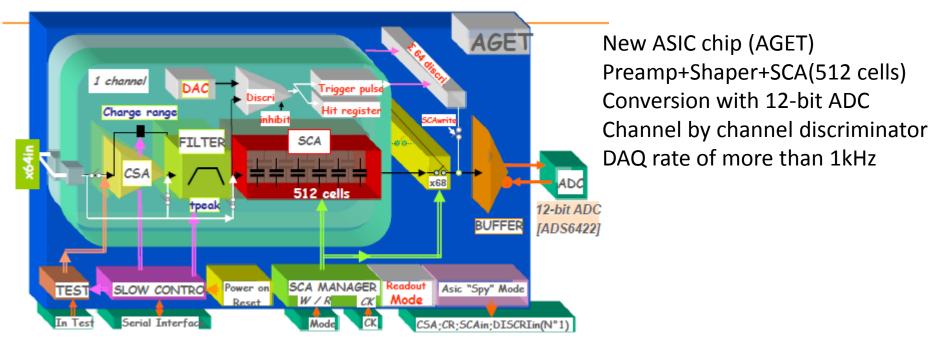
Litron Laser 266nm 15 mJ / pulse (10Hz)


SAMURAI Time Projection Chamber

• Physics Motivation

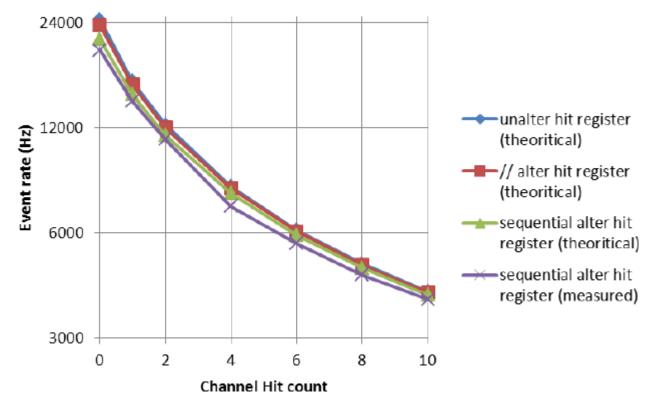
- Symmetry Energy, Observables & Measurement

- Conceptual Design & Fabrication
- Simulated TPC Performance
- Experimental Program at RIBF
- Summary


TPC electronics

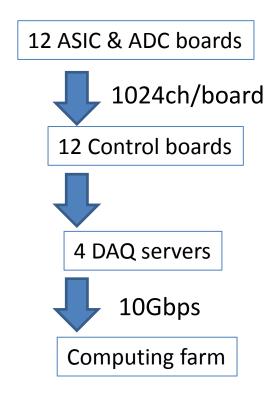
Nuclear matter in neutron stars investigated by experiments and astronomical observations

• The study of neutron star matter is elected as "Grant-in-Aid for Scientific Research on Innovative Areas" five year project.



Novel TPC readout electronics: GET

- R&D by GET (General Electronics for TPC) Collaboration for next generation of readout electronics.
 - Production will start soon.
- <u>Make it possible to readout 12bit ADC 512 samples from</u> <u>12000 pads under 1kHz DAQ rate.</u>

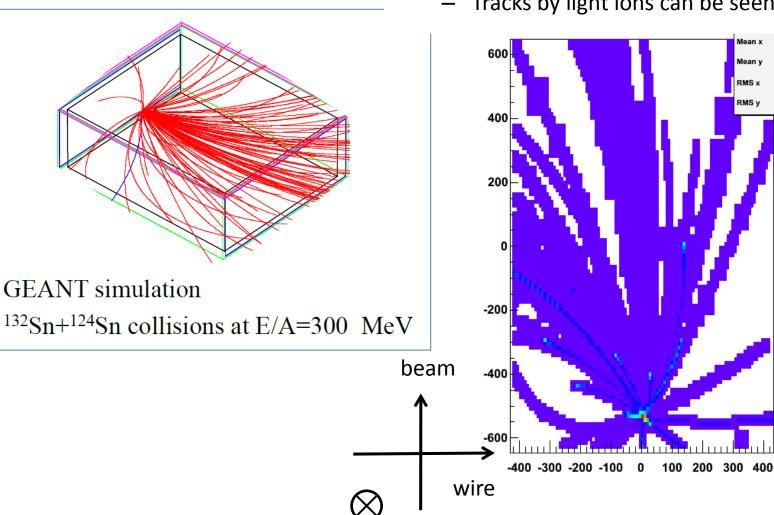

Selective digitization : improvement of DAQ rate limit

- Digitize only the channel with hit register.
 - Most of the TPC channel have pedestal data.
 - \rightarrow loss of conversion time
- Rate at 512 time-bins and 8 hit channels: 4500 Hz

It needs modern computing infrastructure like high energy experiments

- On the assumption of 1kHz DAQ rate:
 - Data production rate is estimated to be 3.2GByte/sec without zero-suppression.
 - It would be ~320MByte/sec on the assumption of 10% data reduction after zerosuppression.
 - 188TByte/week
- TPC detector response time limits the DAQ trigger rate.
 - We design the TPC as the acceptable rate of 20kHz beam in total.
 - − 50cm drift length, 5cm/ μ sec drift velocity, 10 μ sec drift time. \rightarrow 10⁵ at most.
 - 400Hz trigger rate for minimum bias trigger.
 - Assume 2% collision rate target.

Simulation study of basic TPC performance


- We intend to measure:

- π⁺, π⁻
- Neutron, Proton
- ³H, ³He
- Flow of each particles

Performances on

- Impact parameter measurement
- <u>Reaction plane measurement</u>
- <u>Charged particle tracking</u> are important.

Event display of HIC

drift

Deposited energy on each readout pads.

PHITS-2.15 124Sn+124Sn E=340MeV/u

Mean x

Mean y

RMS x

RMS y

-38.83

-345.2

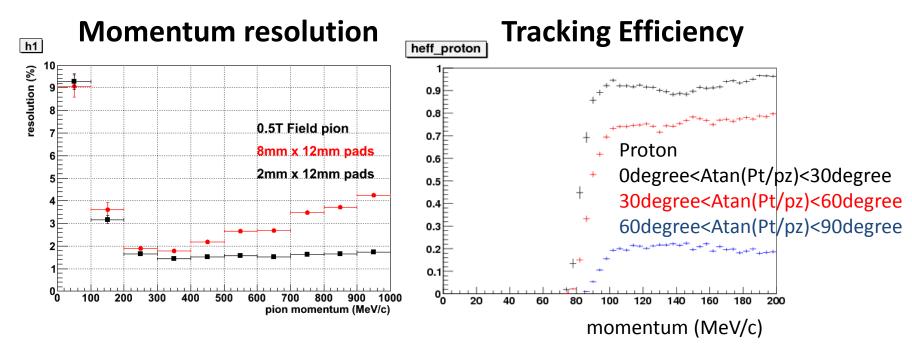
164.3

230

50

25

20

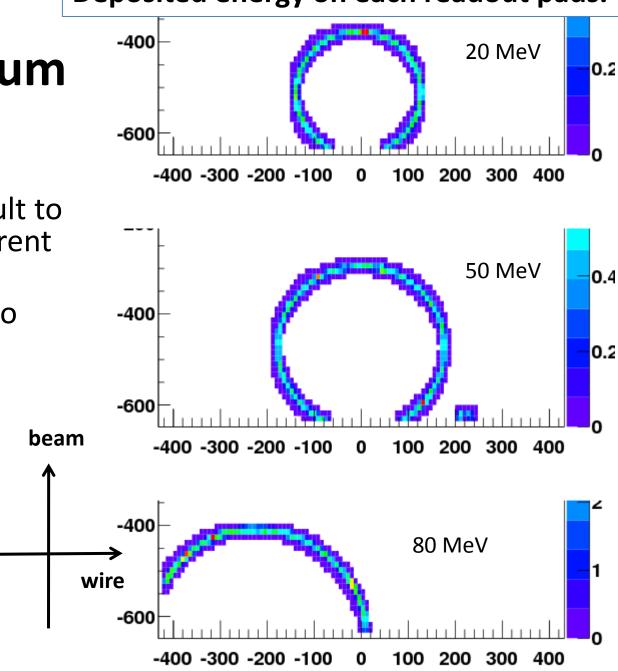

15

10

50

Tracks by light ions can be seen

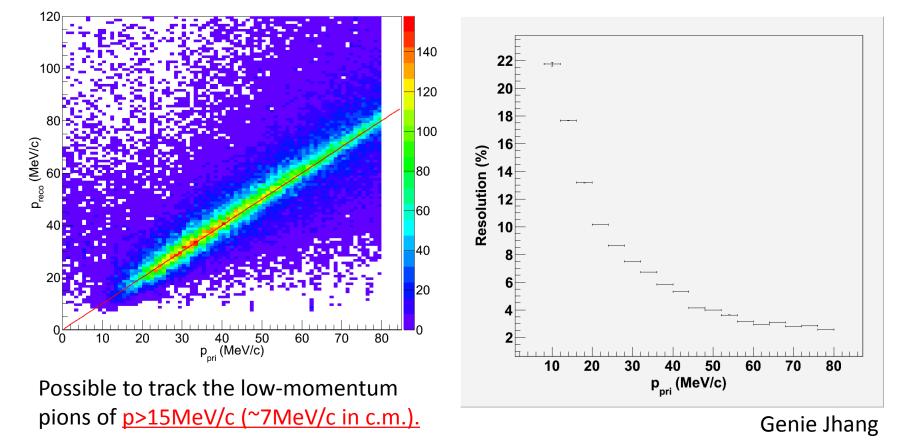
Single track performance with simple algorithm: track finding with Kalman filter


- Currently it is easy to measure:
 - pion p>80MeV/c
 - proton p>100MeV/c
 - Still room to improve for low-momentum particles.
- Momentum resolution: ~2%

Deposited energy on each readout pads.

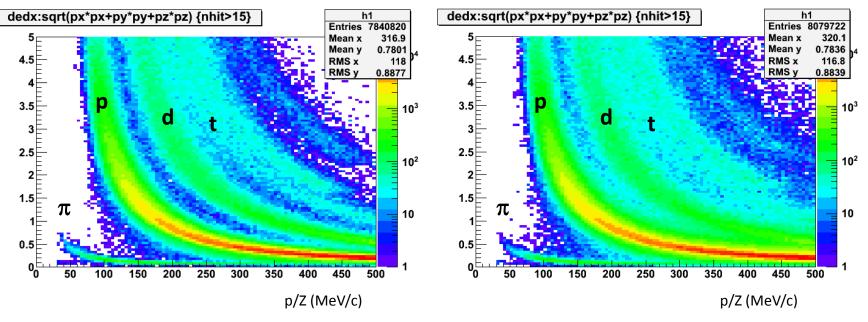
Low-momentum pions

- Helical track is difficult to reconstruct with current algorithm.
- Different algorithm to connect two lowmomentum tracks is invented.


drift

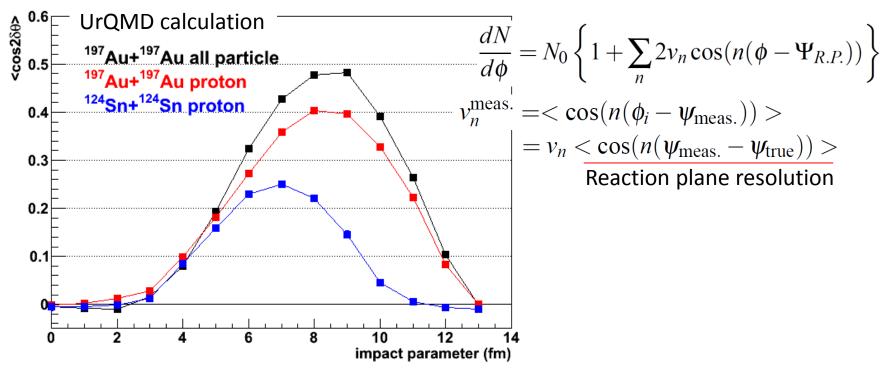
Performance on low-momentum pions

Reconstructed pion momentum vs. primary pion momentum

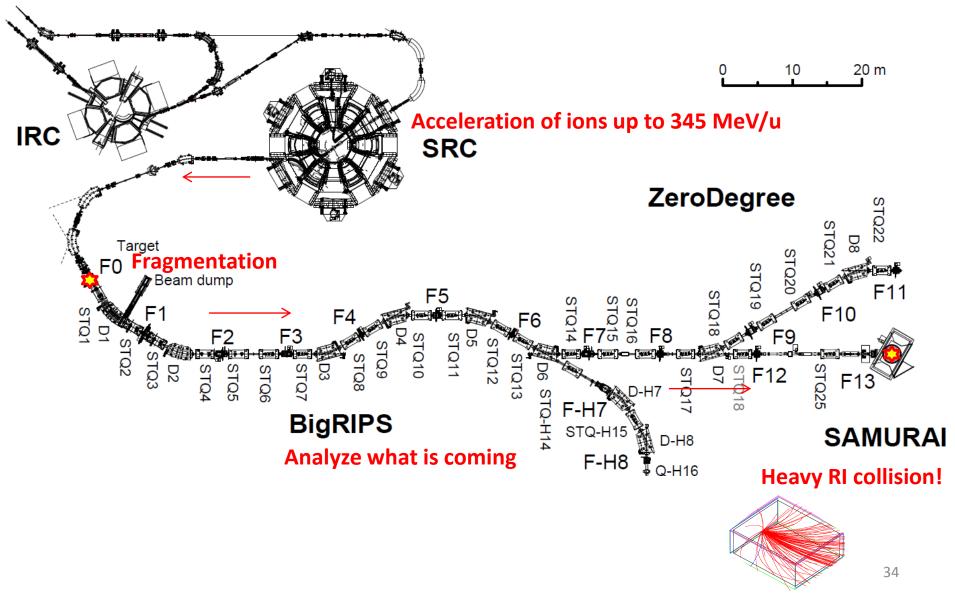

Momentum resolution of lowmomentum pions

TPC PID performance

Single particle

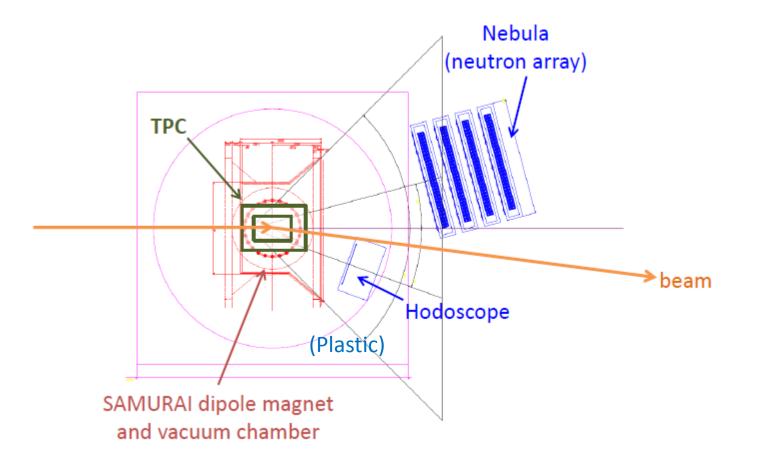

¹²⁴Sn+¹²⁴Sn 340 MeV/u min. bias

de/dx resolution pion@140MeV/c single:13.3% <-> min. bias: 16% proton@210MeV/c single:12.7% <-> min. bias: 14%


Contribution from low-momentum pion can be seen even in HIC.

Flow: Reaction plane resolution

- Large acceptance detector is preferable.
- High multiplicity collision is better in terms of good reaction plane resolution.
 - Higher Z RI is better.
- Measurement in Sn+Sn needs ~x2.5 larger statics than that in Au+Au.

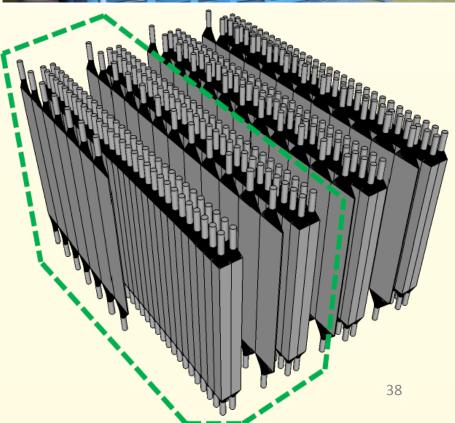

Experiment at RIBF

GEANT simulation

Experimental setup

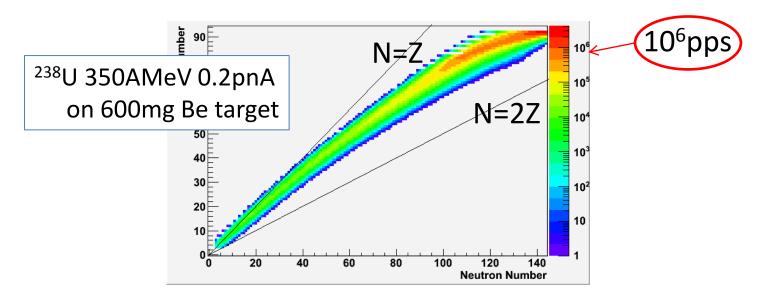
- Plan first run in 2014.
- Auxiliary detectors for heavy-ions and neutrons, and trigger

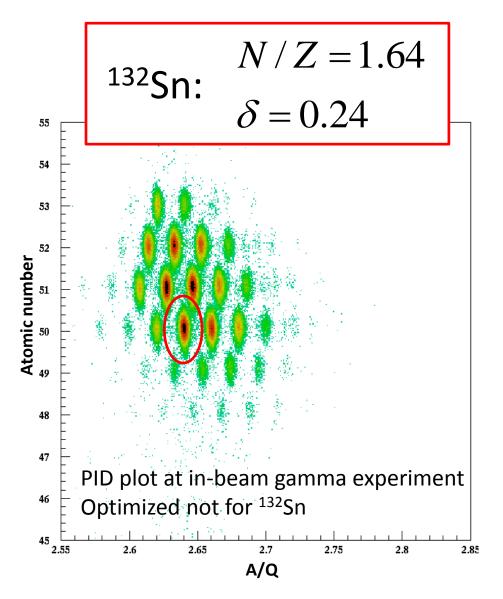
Commissioning Experiment March 2012



SAMURAI-NEBULA

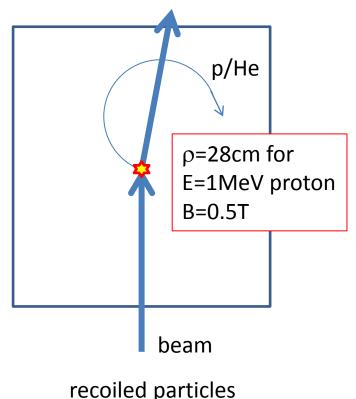
Neutron-detection system for Breakup of Unstable-Nuclei with Large Acceptance


- Design
 - 240 Neutron counters
 - 48 VETO counters
 - arranged into 4 stacks
- Detection efficiency~40% for 1n (Currently)
- Large acceptance
 - 3.6m (H) x 1.8m (V) effective area



Available beam at RIBF

- ¹⁸O, ⁴⁸Ca, ⁷⁰Zn, ¹²⁴Xe and ²³⁸U primary beam.
- Fragmentation process for 2ndary RI beam production through Be or Pb primary target.
 - Mainly Uranium is used for making heavy neutron rich beams.
- It is possible to scan isotopes for wide range.
 - ¹⁰⁸Sn, ¹¹²Sn, ¹²⁴Sn and ¹³²Sn.
 - Useful for the study of other nuclear effect.


¹³²Sn beam at RIBF

- From U primary beam: 345AMeV 5pnA
- 270 MeV/u, 1200cps, and purity of 12% ¹³²Sn beam was made at last in-beam gamma experiment.
- Rough LISE++ calculation shows ~3000cps, 30% purity, 300 MeV/u ¹³²Sn is possible to be made at RIBF.
- My question: other contaminations are useless??

Application of SAMURAI-TPC to other experiments.

- Only for HIC experiments?
 - Any suggestions are welcome.
- Forward angle inelastic scattering experiment?
 - Measurement of Giant monopole resonance.
- Inverse kinematics in the case of RI.
- \rightarrow Active target TPC.
 - Use TPC gas as target as well as TPC volume.
 - Low-pressure volume to gain range.
 - ⁴He recoil energy at 0.5 degree (c.m.s.) is only 0.27MeV for ⁶⁸Ni at 100 MeV/u.
 - Internal trigger with GET electronics.

Summary

- TPC for use within the SAMURAI dipole magnet at RIKEN, Japan
 - Complete: Top Plate & Structural Ribs, Enclosure Frame and Sealing Plates, Motion Chassis and Hoisting Beams
 - Fabrication underway: Pad planes, field cage, voltage step down
 - Construction expected to finish in 2012; delivery to RIKEN 2013
- Dedicated electronics development in progress
- TPC Performance is simulated toward first experiment
 - Low energy thresholds are essential
- Experimental program at SAMURAI to begin in 2014

Acknowledgements

J. Barney^c, Z. Chajecki^c, C.F. Chan^c, S. Dye^b, M. ElHoussieny^b, J. Estee^c, M. Famiano^b, B. Hong^f, G. Jhang^f, J. Gilbert^c, T. Isobe^d, F. Lu^c, W.G. Lynch^c, A.B. McIntosh^a, T. Murakami^e, H. Sakurai^d, R. Shane^c, C. Snow^b, A. Taketani^d, S. Tangwancharoen^c, M.B. Tsang^c, S.J. Yennello^a

^aTexas A&M University, ^bWestern Michigan University, ^cNSCL Michigan State University, ^dRIKEN, Japan, ^eKyoto University, ^fKorea University