

The future of Particle Physics and the role of young researchers

Vincenzo Vagnoni (INFN Bologna and CERN)

BOLOGNA - AULA GIORGIO PRODI - PIAZZA SAN GIOVANNI IN MONTE SEPTEMBER 30, 2025

Standard Model: how stubborn is it?

- Why three generations of leptons and quarks?
- Why such a huge difference in the masses of fundamental particles?

- What's the origin of the structure of flavour couplings?
- Why is the universe made of "matter" and not "antimatter"?
- What stabilises the Higgs mass?
- What's the nature of dark matter?
- And what about gravity?

• ...

The Standard Model is certainly incredibly stubborn, but we know it can't be the ultimate theory!

General considerations on our present understanding of fundamental reality

- We are living a stunning contradiction in modern days: we have developed the most successful theory of reality ever made and checked it in a wide number of ways for decades, but we have at the same time developed the awareness that it can't be complete
 - Incidentally, have you ever reflected on why the Standard Model has been named a "model", even without the full awareness of its incompleteness that we have reached today?
- I don't even want to discuss about the multiverse hypothesis, for how brilliant and ingenuous, simply because it is an excessively cheap way to escape the contradiction
- It's not time to give up, and in general I believe that in fundamental research it's never a good idea to give up, if you want a metaphore of life
 - Explore new routes, build new tools

The most powerful tool we have got today

- It took 20 years of design, construction and commissioning
- It has been in operation since 15 years, and will remain in operation for another 15 years or more after a major upgrade at the next long shutdown

Colliders and discoveries

powerful instruments for discovery and precision measurements

We have never seen anything like this!

- What to say to a plot like this?
- 10 orders of magnitude of agreement between cross sections from the Standard Model and experiment!
- Involving a plethora of different processes, ranging from pp elastic scattering, to inclusive inelastic, jets and photon production, gauge bosons, top quarks, Higgs, ..., with all the possible couplings

The High-Luminosity LHC

- This will be a major machine upgrade to increase the peak luminosity → implies a larger number of simultaneous pp collisions (pileup) at each crossing of the LHC proton bunches
- The ATLAS and CMS detectors will also need immediate major upgrades, so-called Phase-II upgrades, to cope with a pileup of about 200 simultaneous interactions per crossing at 40 MHz collision rate!

Phase-II upgrades of ATLAS and CMS now being in the production phase, to be installed during Long Shutdown 3. Further upgrades of ALICE and LHCb foreseen for Long Shutdown 4

What have we learned from the LHC (so far)?

- The SM works pretty well... goddamn it!
- The Higgs boson, and then the Higgs field and the mechanism for generating particle masses, are real
- Huge amount of LHC data fits SM predictions at am amazing level of accuracy, but no real hint of BSM yet
 - Bounds on new heavy states predicted by many BSM models widely extended
- Flavour physics has strengthened constraints, but with no clear evidence of discrepancies from the SM
- Let's see what we will get with the HL phase

How to proceed beyond the HL-LHC?

- Colliders are still the most powerful instruments that we know to probe physics at smaller length scales
- Four main strategies
 - Explore the characteristics of the Higgs sector to possibly spoil the SM picture
 - Keep searching for new heavy states coupled to the SM
 - Look for new "dark" states, meaning new states which are not coupled to the SM at tree level, either producing them or looking for them in heavy-particle decays (Higgs, top)
 - Try harder with indirect searches, read flavour physics

What's next?

- Several options in consideration beyond HL-LHC
 - Precision studies with Higgs Factories
 - Discovery physics on the >TeV scale

The FCC programme

- Long-term programme maximising physics opportunities
 - Stage 1: FCC-ee (Z, W, H, $t\bar{t}$) as Higgs factory, electroweak and top factory, flavour physics
 - Stage 2: FCC-hh (~100 TeV) for energy frontier exploration
- Building on and reusing CERN's existing infrastructure
- Plan to start with FCC-ee a few years after the end of HL-LHC

 ESPP update next year!

2045 - 2060

2070 - 2095

A similar project CEPC/SPPC is being studied and proposed in China

FCC-hh: highest collision energy

- Order of magnitude performance increase in both energy and luminosity wrt LHC
 - 100 TeV collision energy vs 14 TeV for LHC
 - 20 ab⁻¹ per experiment over 25 years of operation vs 3 ab⁻¹ for LHC

via • Key technology: high-field magnets

12 T Nb₃Sn quadrupole

from

FNAL dipole demonstrator 14.5 T Nb₃Sn

R&D on superconducting magnets

- Nb₃Sn in an intermetallic compound of Nb and Tin which is superconductor below 18 K and 30 T \rightarrow State of the art Nb₃Sn strands can carry up to J_C(16 T, 4.2 K)=1200 A/mm²
- 12 T dipoles are close to demonstration (TRL 6–7), while 14-16 T dipoles still need ~5 years of R&D (TRL 4–5)
 - To compare with NbTi 8 T LHC dipoles
- However, the question is not only to make them, but also to reduce production costs
- Making progress in this area
 is of paramount importance for the future of High Energy Physics

Magnet Technology Readiness Levels

What can we do without young researchers?

What can we do without young researchers?

Nothing

Several opportunities to learn and contribute to the global growth!

- Physics analysis, including advanced machine learning methods
- Theoretical progress, including understanding "well known" theories, like QCD
- Detectors development, including picosecond timing
- Physics software development, exploiting modern computing architectures
- Electronics development, including next-generation radiationresistant ASICs
- Offline computing, including exploitation of supercomputing centres

• ...

Not only physics

- Every new generation of researchers becomes more and more open to international cooperation
 - Initiatives like IMAPP are exactly what we need for a better integration!
- Equally important to physics is the need to keep people from all over the world cooperate on a common subject for the benefit of everybody
 - Physics is a universal language!
- Today's world looks problematic and scary, but you have the opportunity to contribute to a better future for the entire humankind → Never underevaluate this aspect, it's definitively not just rethorics
- Focus on your aspirations, be ambitious and never give up!

Good luck to everyone!