Incoherent Radiation as a Seed for Free Electron Laser

Ahmet Neccar

Supervisor: Dr.Vittoria Petrillo

Outline

- Free electron laser(FEL)
 - FEL configurations
 - Different seeding schemes
- SPARC project
- Betatron radiation
- The resonance condition
- Simulation setup
 - White radiation
 - Electron beam
- Results
 - FEL growth and bunching
 - Saturation lengths
 - Temporal Output
- Conclusion

Free Electron Laser(FEL)

- •A Free Electron Laser is a source of coherent light
 - oRelativistic electron beam
 - Oundulator (periodic magnets)
 - ○Oscillatory motion → radiation
 - Coherent amplification
 - oLaser-like source
 - oTunable λ

Seeded Amplifier FELs

Figure adapted from L. Giannessi, "Corso Fisica del FEL CONDIVISO," Lecture slides

FEL Configurations

Oscillator FEL

- Uses mirrors → optical cavity
- Works at IR–THz wavelengths
- Applications: spectroscopy, materials science

Storage Ring FEL

- Uses electron storage ring (like synchrotrons)
- e- bea,
- Moderate intensity, high repetition rate
- Applications: spectroscopy, user experiments

Single-Pass High-Gain FEL

- Based on linac
- No mirrors → fresh beam each pass
- Works at X-ray wavelengths
- Applications: ultrafast science, molecular movies, plasma studies

Figure adapted from L. Giannessi, "Corso Fisica del FEL CONDIVISO," Lecture slides

SASE vs Seeding

SASE FEL

- Starts from shot noise (spontaneous emission)
- Needs high beam energy & long undulators
- Requires high beam quality: small emittance, short bunches
- Limited temporal coherence, strong fluctuations

Figure adapted from L. Giannessi, "Corso Fisica del FEL CONDIVISO," Lecture slides

Seeded FEL

- Starts from coherent input field
- Efficient energy exchange → density modulation
- Improved coherence, stability, reproducibility
- Enables shorter undulators than SASE
- Limited by the seed wavelenght for X-ray range

Figure adapted from Y. U. Jeong, K.-H. Jang, S. Bae, V. Pathania, J. Mun, K. Lee, "Prospects of a terahertz free-electron laser for field application," J. Korean Phys. Soc., 80, 195–205 (2022)

SPARC

- SPARC (Frascati, Italy): Sorgente Pulsata ed Amplificata di Radiazione Coerente
- First lasing: 2009 at 150 MeV electron beam energy
- Modes: Operated in both SASE and seeded FEL configurations
- Spectral range:
 - SASE: visible (≈ 500–800 nm)
 - Seeded mode: extended to 36–400 nm
- Research focus:
 - · FEL gain dynamics and saturation studies
 - Superradiance and beam manipulation experiments
 - Benchmarking of simulation codes (GENESIS 1.3, etc.)
- One of the first European FEL user facilities demonstrating both SASE and external seeding, paving the way toward FERMI and future plasma-based FELs.

Quantity	Symbol	Value
Undulator period	λ_u	2.80 cm
Undulator parameter (planar)	K	1.281
Resonant wavelength	λ_r	826 nm
Mean beam energy	E_0	$\approx 89.75 \text{ MeV}$
Peak current	$I_{ m pk}$	200 A
Energy spread	σ_E/E_0	$0.097\% \ (\sigma_E \approx 0.087 \ \text{MeV})$
Normalized emittance (x/y)	$\epsilon_{n,x}/\epsilon_{n,y}$	2.24 / 1.59 mm·mrad

Figures adapted from L. Giannessi et al., Self-amplified spontaneous emission for a single pass free-electron laser, Phys. Rev. ST Accel. Beams 14, 060712 (2011)

Betatron Radiation

Plasma accelerators (LWFA/PWFA):

Compact, high-gradient drivers → future FEL technology

Formation (inside plasma bubble):

- Driver bunch expels plasma electrons → ion cavity ("bubble")
- Witness bunch oscillates transversely in plasma focusing fields
- Oscillatory motion → emits betatron radiation

Properties:

- Broadband X-rays, femtosecond duration, naturally synchronized
- · High brightness, forward-directed
- Spectral overlap with FEL resonance → potential seed

Challenges:

- Radiation is incoherent, fluctuating
- Difficult to transport, monochromatize, and couple into undulator

Figure adapted from M. Galletti et al., "Prospects for free-electron lasers powered by plasma-wakefield-accelerated beams," Nature Photonics

Figure adapted from A. Ghigo et al., "Free electron laser seeded by betatron radiation," NIM A 909 (2018)

The Resonance Condition

- λ_r : FEL resonant wavelength
- λ_u : undulator period
- γ: electron beam energy (Lorentz factor)
- **K**: undulator strength parameter
- θ : observation angle

Key points:

- Determines wavelength of emitted radiation
- Tunable via beam energy, λ_u, or K
- Resonance condition must match seed spectrum (e.g., white light overlap)
- Bandwidth tolerance $\sim \rho \lambda_r$ (Pierce parameter)
- Beam quality ($\Delta \gamma / \gamma$, emittance) \rightarrow shifts / broadens resonance

$$\lambda_r = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)$$

- At resonance, radiation phase stays synchronized with oscillating electrons
- Enables constructive interference →
 exponential gain
- Tunable knobs: beam energy (γ), undulator
 period (λ_u), K parameter

White Radiation

- Motivation: Betatron radiation = promising seed but incoherent, fluctuating, hard to test directly
- Approach: Use synthetic white radiation → broadband and controllable
- Generation: Created power profile with random fluctuations + random phase distribution to mimic incoherence
- Control knobs: spectrum width, temporal envelope, arrival time (tunable in simulations)
- Application: Injected into SPARC FEL beamline in GENESIS → compared against SASE case under identical beam/undulator conditions
- Goal: Test if incoherent broadband seeds can trigger FEL amplification and improve temporal properties

Electron Beam

- Energy spread $(\Delta \gamma/\gamma) \rightarrow$ too large \rightarrow destroys resonance overlap \rightarrow reduces gain
- **Emittance** → transverse beam quality; high emittance → larger divergence → weaker coupling to radiation field
- Peak current → higher current → stronger FEL gain
- Bunch length → must overlap with slippage length; too short → limits amplification
- Energy stability → jitter broadens spectrum, reduces reproducibility

Simulation Parameters

- Undulator period (λu = 2.8 cm): Sets fundamental FEL resonance; relatively long → IR wavelength output.
- **K = 1.28:** Moderate undulator strength → balances radiation wavelength and coupling efficiency.
- Resonant wavelength (λr = 826 nm): Matches accessible diagnostics at SPARC → convenient for benchmarking simulations.
- Beam energy (~90 MeV): Requires precise beam quality to achieve gain.
- Peak current (2 kA): High enough to enter high-gain regime despite moderate energy.
- Normalized emittance (~2 / 1.6 mm·mrad): Critical for transverse coherence.

Quantity	Symbol	Value
Undulator period	λ_u	2.80 cm
Undulator parameter (planar)	K	1.281
Resonant wavelength	λ_r	826 nm
Mean beam energy	E_0	$\approx 89.75 \text{ MeV}$
Peak current	$I_{ m pk}$	200 A
Energy spread	σ_E/E_0	$0.097\% \ (\sigma_E \approx 0.087 \ {\rm MeV})$
Normalized emittance (x/y)	$\epsilon_{n,x}/\epsilon_{n,y}$	2.24 / 1.59 mm·mrad

White Radiation Properties

- Fractional bandwidth ~5% → mimics broad, incoherent source like betatron/white light.
- Coherence time ~60 fs → much shorter than electron bunch length → realistic for incoherent seed.
- Coherence length ~18 μm \rightarrow ensures overlap with electron bunch slices.
- Entrance waist $\sim 2.3 \times 10^{-4}$ m \rightarrow chosen to match beam transverse size.
- Peak power scan (1–1000 W) → allows studying FEL sensitivity to seed strength.

Peak power P_{pk} (W)	Total energy U_{seed} (J)	U_{seed} (pJ)	$t_{\rm eff} = U_{\rm seed}/P_{pk}$ (ps)
1	2.83×10^{-13}	0.283	0.283
10	2.28×10^{-12}	2.28	0.228
100	2.11×10^{-11}	21.1	0.211
1000	2.33×10^{-10}	233	0.233

Quantity (symbol)	Value
Fractional bandwidth (Δ)	0.04708 (4.708%)
Coherence time (τ_c)	$5.85 \times 10^{-2} \text{ ps } (58.5 \text{ fs})$
Coherence length (ℓ_c)	$17.54~\mu\mathrm{m}$
Time window (T)	2.945 ps
Entrance optical waist (w_0)	$\approx 2.3 \times 10^{-4} \text{ m}$

FEL Growth & Bunching

- Radiation amplification starts from shot noise (SASE) or from a seed field.
- Weak seeds (1 W, 10 W): no clear advantage over SASE, sometimes degraded growth.
- Moderate seeds (100 W): earlier growth, stronger bunching, narrower spectrum.
- Strong seeds (1000 W): fastest saturation, highest bunching, single-peak spectrum.
- Clear correlation: higher seeding → earlier saturation & improved coherence.

Case	$P_{ m sat} \left({ m W} ight)$	$b_{ m max}$	Spectrum
SASE	$\sim 5 \times 10^5$	~ 0.05	Broad, noisy
$1 \mathrm{W}$	$\sim 5 \times 10^5$	~ 0.05	Broad, noisy
10 W	$\sim 2 \times 10^5$	< 0.05	Irregular, degraded
100 W	$\sim 7 \times 10^5$	~ 0.055	Narrower
$1000 \mathrm{W}$	$\sim 1 \times 10^6$	> 0.06	Narrow, single peak

Saturation Lengths

11×10⁵
10×10⁵
9×10⁵

1000W

Temporal Output

- SASE/1W → noisy multi-spike structure.
- 10W → weaker output, irregular temporal profile.
- 100W → shorter pulse with fewer spikes, more stable.
- 1000W → clean, dominant single spike with highest power.
- Stronger seeds improve temporal coherence, reduce fluctuations, and shift the system toward more stable lasing.

\mathbf{Case}	$m{L}_{ m sat} \ [m m]$	$oldsymbol{P}_{\mathrm{sat}} \; [\mathrm{W}]$	$\Delta t_{ m FWHM}$ [fs]	$oldsymbol{\Delta s}_{ ext{FWHM}} \left[oldsymbol{\mu} ext{m} ight]$	Temporal structure
SASE	~ 13.4	$\sim 5 \times 10^5$	~ 205	~ 50	Multi-spike, noisy
1 W	~ 13.47	$\sim 5 \times 10^5$	~ 206	~ 61.9	Multi-spike, noisy
10 W	~ 14.87	$\sim 2 \times 10^5$	~ 151	~ 45.3	Multi-spike, weaker
$100 \mathrm{W}$	~ 13.27	$\sim 6 \times 10^5$	~ 108	~ 32.5	Fewer spikes, shorter pulse
1000 W	~ 11.84	$\sim 1 \times 10^6$	~ 146	~ 43.9	Dominant single spike

Conclusion

- SASE baseline reproduces expected noisy, multi-spike structure with broad spectrum.
- White-light seeding explored as an alternative seed source:
- Low seed powers (1–10 W) show limited improvement or degraded performance.
- Intermediate seeding (100 W) yields shorter pulses, earlier saturation, and improved coherence.
- Strong seeding (1000 W) produces clean single-spike temporal structure, but with spectral broadening.
- Key trend: Increasing seed power reduces saturation length and improves temporal coherence.
- Outlook: White radiation, despite limitations in spectral control, is a valuable test-bed for alternative FEL seeding strategies, especially for betatron seeded cases.