Testing TeV Scale Gravity Theories with Public Neutrino Oscillation Data

Master's Thesis Defense

Melike Nur Erbek

Supervisor: Dr. Philipp Eller (TUM)

September 29, 2025

Technische Universität Dortmund Università di Bologna Université Clermont Auvergne

Research conducted at: Technische Universität München

• Motivation: Beyond the Standard Model

- Motivation: Beyond the Standard Model
- Theory: ADD Model and Kaluza-Klein Towers

- Motivation: Beyond the Standard Model
- Theory: ADD Model and Kaluza-Klein Towers
- Methodology: Experimental Data and Analysis Framework

- Motivation: Beyond the Standard Model
- Theory: ADD Model and Kaluza-Klein Towers
- Methodology: Experimental Data and Analysis Framework
- Results: Constraints on One and Two Extra Dimensions

- Motivation: Beyond the Standard Model
- Theory: ADD Model and Kaluza-Klein Towers
- Methodology: Experimental Data and Analysis Framework
- Results: Constraints on One and Two Extra Dimensions
- Summary and Outlook

• Standard Model (SM): Tremendously Successful

- Standard Model (SM): Tremendously Successful
- But... Lingering Fundamental Questions

- Standard Model (SM): Tremendously Successful
- But... Lingering Fundamental Questions
 - The Hierarchy Problem

- Standard Model (SM): Tremendously Successful
- But... Lingering Fundamental Questions
 - The Hierarchy Problem
- ullet The Higgs Mass: Surprisingly Light (\sim 125 GeV)

- Standard Model (SM): Tremendously Successful
- But... Lingering Fundamental Questions
 - The Hierarchy Problem
- The Higgs Mass: Surprisingly Light (∼125 GeV)
- Theoretical Expectation: Planck Scale ($\sim 10^{19}$ GeV).

- Standard Model (SM): Tremendously Successful
- But... Lingering Fundamental Questions
 - The Hierarchy Problem
- The Higgs Mass: Surprisingly Light (\sim 125 GeV)
- Theoretical Expectation: Planck Scale ($\sim 10^{19}$ GeV).
- The Discrepancy: A 16 Order of Magnitude Gap

- Standard Model (SM): Tremendously Successful
- But... Lingering Fundamental Questions
 - The Hierarchy Problem
- The Higgs Mass: Surprisingly Light (\sim 125 GeV)
- Theoretical Expectation: Planck Scale ($\sim 10^{19}$ GeV).
- The Discrepancy: A 16 Order of Magnitude Gap
- ullet o Requires "Unnatural" Fine-Tuning

- Standard Model (SM): Tremendously Successful
- But... Lingering Fundamental Questions
 - The Hierarchy Problem
- The Higgs Mass: Surprisingly Light (∼125 GeV)
- Theoretical Expectation: Planck Scale ($\sim 10^{19}$ GeV).
- The Discrepancy: A 16 Order of Magnitude Gap
- → Requires "Unnatural" Fine-Tuning

Motivates the search for a *natural* solution \rightarrow Large Extra Dimensions

The ADD model proposes a solution to the Hierarchy Problem

The ADD model proposes a solution to the Hierarchy Problem

Core Idea: Our 3+1 dimensional universe is a "brane" embedded in a higher-dimensional "bulk"

The ADD model proposes a solution to the Hierarchy Problem

Core Idea: Our 3+1 dimensional universe is a "brane" embedded in a higher-dimensional "bulk"

Gravity can propagate in the bulk making its force is diluted across the large extra dimensions, so it *appears* weak.

The ADD model proposes a solution to the Hierarchy Problem

Core Idea: Our 3+1 dimensional universe is a "brane" embedded in a higher-dimensional "bulk"

1

Gravity can propagate in the bulk making its force is diluted across the large extra dimensions, so it *appears* weak.

...and explains Neutrino Masses!

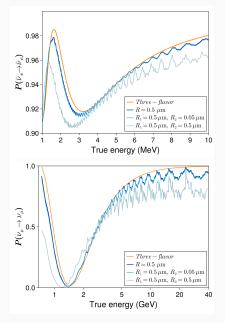
A right-handed neutrino can also live in the bulk.

The ADD model proposes a solution to the Hierarchy Problem

Core Idea: Our 3+1 dimensional universe is a "brane" embedded in a higher-dimensional "bulk"

Gravity can propagate in the bulk making its force is diluted across the large extra dimensions, so it *appears* weak.

...and explains Neutrino Masses!


A right-handed neutrino can also live in the bulk.

Its coupling to the Higgs is also diluted by the volume of the extra dimensions, naturally generating a tiny mass.

The Signature: Kaluza-Klein (KK) Towers

- Particles propagating in the extra dimension appear in our
 4D world as a tower of massive states: the Kaluza-Klein (KK) modes.
- Sterile KK modes mix with the active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$.
- Key Effect: New, energy-dependent distortions in the neutrino survival probability.
 - Rapid "wiggles"
 - Overall suppression of event rate

The Signature: Effect of Topology

One Extra Dimension (1D)

The KK mass-squared spectrum is non-degenerate and relatively sparse.

$$m_n^2 = \frac{n^2}{R^2}$$

$$n = 1, 2, 3, \dots$$

Two Extra Dimensions (2D)

The spectrum is much **denser** and highly **degenerate**.

$$m_{n_1,n_2}^2 = \frac{n_1^2}{R_1^2} + \frac{n_2^2}{R_2^2}$$

e.g., for a symmetric torus $(R_1 = R_2)$, the states (1,2), (2,1) have the same mass.

KK Tower Structure

1 Extra	Dimension
	R

2D Symmetric
$$R_1 = R_2 = R$$

$$2D$$
 Asymmetric $R_1 = R = 10 \times R_2$

State (n)	Mass ²
(1)	$1/R^2$
(2)	$4/R^{2}$
(3)	$9/R^{2}$
(4)	$16/R^{2}$
(5)	$25/R^2$

State
$$(n_1, n_2)$$
 Mass²
 $(1,0), (0,1)$
 $1/R^2$
 $(1,1)$
 $2/R^2$
 $(2,0), (0,2)$
 $4/R^2$
 $(2,1), (1,2)$
 $5/R^2$
 $(2,2)$
 $8/R^2$

Sparse, evenly spaced.

Denser & Degenerate.

Moderate degeneracy.

Existing Experimental Data

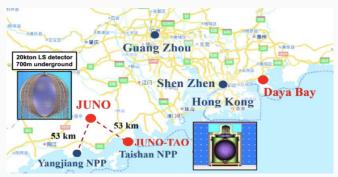
Accelerator Neutrinos MINOS/MINOS+

- Long-baseline (735 km) ν_{μ} disappearance experiment.
- Probes a different flavor channel at higher energies (GeV scale).

Existing Experimental Data

Accelerator Neutrinos MINOS/MINOS+

- Long-baseline (735 km) ν_{μ} disappearance experiment.
- Probes a different flavor channel at higher energies (GeV scale).



Reactor Neutrinos Daya Bay

- Short-baseline (\sim 1.5 km) $\bar{\nu}_e$ disappearance experiment.
- Provides a high-statistics measurement in the MeV energy range.

Future: JUNO & TAO

JUNO: The Precision Instrument

- Massive detector at a \sim 53 km baseline.
- **Challenge:** Sensitivity limited by systematic uncertainties (flux, energy response).

TAO: The High-Resolution Calibrator

- Compact detector at a 30 m baseline.
- **Solution:** Precisely measures the *un-oscillated* spectrum as a reference.

Analysis Framework

1. Software & Modeling

Framework: Newtrinos.jl (Modular global neutrino analysis)

• Forward Models: Predict event spectra for each experiment.

Analysis Framework

1. Software & Modeling

Framework: Newtrinos.jl (Modular global neutrino analysis)

• Forward Models: Predict event spectra for each experiment.

2. Statistical Combination

Method: All experimental likelihoods combined into a single Joint Likelihood.

Analysis Framework

1. Software & Modeling

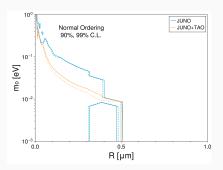
Framework: Newtrinos.jl (Modular global neutrino analysis)

• Forward Models: Predict event spectra for each experiment.

2. Statistical Combination

Method: All experimental likelihoods combined into a single Joint Likelihood.

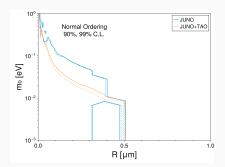
3. Final Constraint


Core Method: Profile Likelihood Analysis

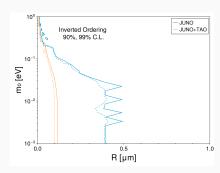
- Scan physics parameters (e.g., Radius *R*).
- At each point, maximize likelihood over all nuisance parameters.

Projections: JUNO & TAO

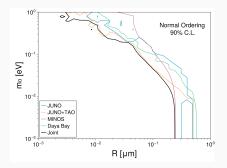
Projections: JUNO & TAO


Normal Ordering: A Modest Improvement

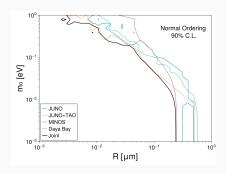
TAO provides a slight tightening of the allowed region.


Projections: JUNO & TAO

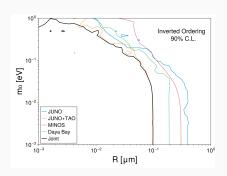
Normal Ordering: A Modest Improvement


TAO provides a slight tightening of the allowed region.

Inverted Ordering: A Dramatic Improvement


TAO's impact is huge, improving the limit on R by a factor of \sim 4.

Joint Constraints

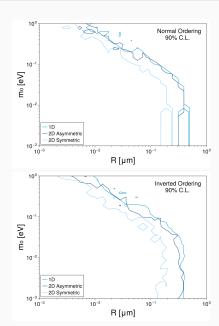

- MINOS drives the constraint.
- Final **Joint Limit:** *R* < 0.2 μm (90% C.L.).

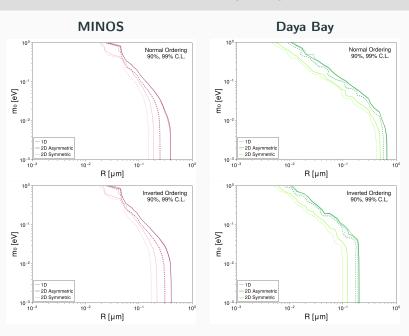
Joint Constraints

• Final **Joint Limit:** *R* < 0.2 μm (90% C.L.).

- JUNO+TAO dominates.
- Final **Joint Limit:** *R* < 0.1 μm (90% C.L.).

2 Extra Dimensions: JUNO


Denser, more degenerate tower of KK states in **2D Symmetric** torus


Stronger, more easily detectable distortion in the neutrino spectrum

Twice as strong constraints as in the 1D case

2 Extra Dimensions: MINOS & Daya Bay

Summary

- Explored tests of TeV-scale gravity with large extra dimensions using MINOS/MINOS+ and Daya Bay inputs together with JUNO/TAO sensitivity forecasts.
- The results suggest complementary strengths among the experiments, with the leading constraints varying based on the neutrino mass ordering.
- Sensitivity depends on compactification topology: 2D symmetric
 cases tended to yield tighter limits than 1D under the same settings,
 highlighting the importance of topology for BSM searches with
 neutrinos.

Outlook

• Data/inputs

 Revisit with real JUNO/TAO data following the August 2025 commissioning.

Methodology

 Systematic study of KK truncation and alternative regularisations (e.g., smooth cutoffs, analytic tail) to bound scheme dependence.

• Physics extensions

- Exploration of a wider range of 2D anisotropies (R_2/R_1) .
- Inclusion of complementary channels/experiments (e.g., DUNE, Hyper-K) for different L/E leverage and cross-checks.

References

- $Philipp\ Eller,\ *Newtrinos.jl*.\ https://github.com/philippeller/Newtrinos.jl$
- G. Dvali and A. Yu. Smirnov, *Probing large extra dimensions with neutrinos*, Nuclear Physics B **563** (1999) 63–81. DOI: 10.1016/S0550-3213(99)00574-X
- D. V. Forero, C. Giunti, C. A. Ternes, O. Tyagi, *Large extra dimensions and neutrino experiments*, Phys. Rev. D **106** (2022) 035027. DOI: 10.1103/PhysRevD.106.035027
- V. S. Basto-Gonzalez, D. V. Forero, C. Giunti, A. A. Quiroga, C. A. Ternes, *Short-baseline oscillation scenarios at JUNO and TAO*, arXiv: 2112.00379 (2022).
- JUNO Collaboration (A. Abusleme *et al.*), *Sub-percent precision measurement of neutrino oscillation parameters with JUNO*, Chinese Physics C **46** (2022) 123001. DOI: 10.1088/1674-1137/ac8bc9
- C. Venettacci (for the JUNO Collaboration), *SiPM and readout electronics for the JUNO-TAO Central Detector*, JINST **19** (2024) C07008. DOI: 10.1088/1748-0221/19/07/C07008
- UCL News (2016), *Narrowing the Window on Sterile Neutrinos*. https://www.ucl.ac.uk/news/2016/oct/narrowing-window-sterile-neutrinos
- LBNL Newscenter (2020), *Daya Bay Reactor Experiment Continues to Generate Data*. https://newscenter.lbl.gov/2020/05/29/daya-bay-reactor-experiment-continues-to-generate-data/

Backup — ADD and the Hierarchy Problem

Gravity dilution in *n* extra dimensions

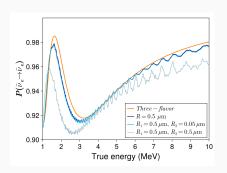
$$M_{\rm Pl}^2 = M_*^{n+2} V_n$$
 with $V_n = (2\pi R)^n$
 $\Rightarrow M_{\rm Pl}^2 = M_*^{n+2} (2\pi R)^n$

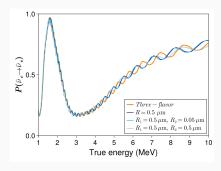
• If the fundamental ((4+n)-D) gravity scale is $M_* \sim \mathcal{O}(\text{TeV})$, a large compactification volume V_n boosts the observed M_{Pl} in 4D, explaining why gravity *appears* weak.

Backup — Small Neutrino Masses from a Bulk RH Neutrino

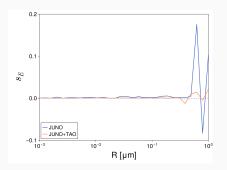
Brane-bulk Yukawa and volume suppression

$$\lambda_{\rm 4D} = \frac{\lambda_{\rm (4+n)}}{\sqrt{V_n M_*^n}}$$

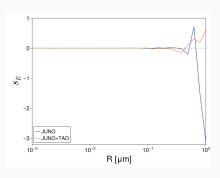

$$m_D = \lambda_{\rm 4D} v \simeq \frac{\lambda_{\rm (4+n)} v}{\sqrt{V_n M_*^n}} \approx \lambda v \left(\frac{M_*}{M_{\rm Pl}}\right)$$


 The zero-mode wavefunction normalization over V_n suppresses the effective 4D Yukawa, giving naturally tiny Dirac masses without fine-tuning.

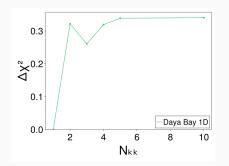
KK tower and oscillation signature

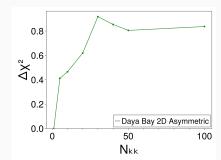

$$m_n^2 = m_0^2 + \frac{n^2}{R^2}$$
 $(n = 1, 2, ...)$

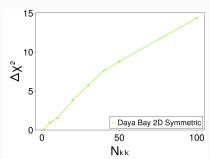
Backup — Oscillation Patterns



Backup — Energy Scale Pulls




Normal Ordering



Inverted Ordering

Backup — χ^2 vs $N_{\rm KK}$ (Daya Bay)

