Preliminary Amplitude Analysis of the $D^0 o K^+K^-\pi^0$ decay at LHCb

Pio Francesco Varrella

Reviewers: Dr. Federico Betti, Prof. Angelo Carbone

TUDo, UniBo & UCA

LHCb experiment and INFN Bologna

September 29, 2025

Outline

1 State-of-art and physical motivation

2 The LHCb experiment

3 Amplitude Analysis

Outline

1 State-of-art and physical motivation

2 The LHCb experiment

3 Amplitude Analysis

CP Symmetry

- The CP Violation does not explain the matter-antimatter unbalance
- Resonant decays provide a new realm for CPV searches:
 - more information to be extracted
 - indirect searches of New Physics
- CPV observed in strange, beauty and charm mesons and recently in beauty baryons
- CPV not yet observed in charmed baryons

Why $D^0 o K^+ K^- \pi^0$?

- Presence of intermediate resonances
- Characterization of the $K\pi$ system scalar part at lower energies
- Probe for New Physics beyond the Standard Model:
 - higher sensitivity to CPV along the phase space
 - Single Cabibbo-suppressed decay with penguin-level diagrams contributing to the full amplitude

(a) Tree-level Feynman diagram

(b) Penguin-level Feynman diagram

Analysis state-of-the-art

- Amplitude analysis (or Dalitz analysis): a tool to understand the resonances contributions and their interferences
- Only one $D^0 \to K^+K^-\pi^0$ Dalitz analysis in literature coming from the BaBar experiment [https://journals.aps.org/prd/abstract/10.1103/PhysRevD.76.011102]
- First attempt of a $D^0 o K^+ K^- \pi^0$ Dalitz analysis within the LHCb experiment
 - BaBar plots:

Outline

1 State-of-art and physical motivation

2 The LHCb experiment

3 Amplitude Analysis

The LHCb experiment

- One of the experiments of the LHC @CERN
- Objective: phenomenology of b and c hadrons and CPV parameters
- The LHCb detector: single-arm forward spectrometer
- Large $c\bar{c}$ production cross section: \sim 2.8 mb at @ 13 TeV (\sim 10⁶ pairs per second)

LHCb experiment: data of the analysis

- pp interactions at $\sqrt{s}=13$ TeV (Run 2) and $\sqrt{s}=13.6$ TeV (Run 3)
- 2016-2018 samples (Run 2) and 2024 sample (Run 3)
- 5.4 fb^{-1} (Run 2) and 7.2 fb^{-1} (2024) of good-for-physics recorded data
- Around $8 \, fb^{-1}$ of data recorded so far in 2025

Outline

1 State-of-art and physical motivation

2 The LHCb experiment

3 Amplitude Analysis

$D^0 o K^+ K^- \pi^0$ decay channel

- Prompt $D^{*+} \rightarrow D^0 (\rightarrow K^+ K^- \pi^0) \pi_{soft}^+$ decays
- Production flavour of the D^0 is determined from the soft (low-P) pion charge
- π^0 reconstructed from ECAL cells \rightarrow two different topologies:
 - Resolved
 - Merged

Comparison between Resolved Run 2 and Run 3 samples

Figure 2: $m_{D^0,DTF}$

Figure 3: $m_{\pi^0,DTF}$

Figure 4: Δm_{DTF}

- 2018 sample from Run 2 and 2024 sample from Run 3
- DecayTreeFitter to re-evaluate the decay topology by requiring the D^{*+} comes from primary pp collisions
- Low Q-value: $Q \equiv m_{D^{*+}} m_{D^0} m_{\pi_{soft}}$

Discriminant fit to Δm_{DTF}

- Multicomponent fit model:
 - ► Signal: Gaussian + Gaussian
 - ► Background: Dst2D0Bg

Extrapolated yields and purities

	N_S^{extr}	Purity	$N_S^{extr}/\mathcal{L}_{int}$ (pb)
Res 2018	110 250	90.71%	20.14
Mer 2018	102 896	89.21%	19.05
Res 2024	304 560	82.25%	43.88
Mer 2024	360 122	82.23%	51.89

• Yields per lumi block higher in 2024 but greater purity in 2018

- SPlot technique: assignment of sWeights to every event in the sample
- Applying the sWeights signal and background distributions can be statistically separated

Dalitz projections of the Resolved 2018 sample

Figure 6: $m_{K^+K^-}^2$

Figure 7: $m_{K^+\pi^0}^2$

Figure 8: $m_{K^-\pi^0}^2$

• $\phi(1020)^0$, $K^*(892)^{\pm}$ resonances are the major visible contributions

Dalitz plots of the Resolved 2018 sample

Figure 9: $m_{K^-\pi^0}^2$ vs $m_{K^+K^-}^2$

Figure 10: $m_{K^-\pi^0}^2$ vs $m_{K^+\pi^0}^2$

Figure 11: $m_{K^+\pi^0}^2$ vs $m_{K^+K^-}^2$

- Resonances associated with two of the planes manifest as vertical or horizontal structures, while those from the third plane appear diagonally
- ullet 2-lobes structures \longrightarrow vectorial (spin-1) resonances

Amplitude fit

$$\underbrace{\mathcal{A}}_{total\ amplitude} = \sum_{\substack{r \text{complex} \\ \text{coefficient} \\ \text{amplitude}}} \underbrace{A_r: D^0 \rightarrow a\,r\,(\rightarrow b\,c)}_{A_r: D^0 \rightarrow a\,r\,(\rightarrow b\,c)}$$

• c_r are found by minimising (within the AmpGen framework):

$$-2\ln \mathcal{L} = -2\sum_{i} \ln \overbrace{P(x_{i}; c)}^{\text{total PDF}} -2\ln \mathcal{L} = -2\frac{\sum_{i} \overbrace{SW_{i}}^{\text{sWeight}}}{\sum_{i} sW_{i}^{2}} \sum_{i} sW_{i} \ln \overbrace{P_{s}(x_{i}; c)}^{\text{signal PDF}}$$

- $P_s(x;c) = \frac{\epsilon(x)S(x;c)\Phi_3(x)}{I(c)}$ with $S(x;c) = |\mathcal{A}|^2$, $\epsilon(x)$ acceptance and efficiency over the PHSP, $\Phi_3(x)$ density of the PHSP
- $I(c) = \int \epsilon(x) S(x;c) \Phi_3(x) d^2x \simeq \frac{I^{gen}}{N_{MC}} \sum_{i=0}^{N_{MC}} \frac{S(x;c)}{S^{gen}(x)}$ [$I^{gen} = \int \epsilon(x) S^{gen}(x) \Phi_3(x) d^2x$]

Fit and interference fractions

- ullet c_r are convention-dependent \longrightarrow no direct comparison
- Convention-independent objects to quantify the amplitudes contributions:
 - ► Fit Fraction (FF_i): $\frac{\int |c_i A_i(x)|^2 d^2x}{\int |\sum_j c_j A_j(x)|^2 d^2x}$
 - ► Interference Fraction (FF_{ij}) : $\frac{\int 2Re\left[c_ic_jA_i(x)A_j^*(x)\right]d^2x}{\int |\sum_k c_kA_k(x)|^2d^2x}$
- ullet Interferences between amplitudes can show up $\longrightarrow \sum_i \emph{FF}_i
 eq 1$

Amplitude model

- Isobar formalism is adopted
- Coherent Sum of intermediate amplitudes seen the pseudo-scalar nature of the decay

$$\mathcal{A}(m_{ab}^2, m_{bc}^2) = \sum_r c_r \mathcal{A}_r(m_{ab}^2, m_{bc}^2)$$

$$\mathcal{A}_r(m_{ab}^2, m_{bc}^2) = \underbrace{F_D^{(L)}(q, q_0)}_{\text{Blatt-Weisskopf}} \underbrace{Z_L(m_{ab}^2, m_{bc}^2)}_{\text{Resonance}} \underbrace{\tau_r(m_{bc})}_{\text{Resonance Blatt-Weisskopf}} \underbrace{F_r^{(L)}(p, p_0)}_{\text{form factor}}$$

Monte Carlo simulation strategy

• A full LHCb $D^0 o K^+ K^- \pi^0$ simulation sample is missing

- ullet VSS model for $D^{*+} o D^0\pi_{soft}^+$, BaBar-based model for $D^0 o K^+K^-\pi^0$
- Momentum smearing derived from the full $D^{*+} o D^0 (o \pi^+ \pi^- \pi^0) \pi^+_{soft}$ simulation sample

Kinematics of the produced RapidSim+EvtGen sample

■ sWeights ■ RapidSim

• Gradient Boosted Reweighter method (used variables: P_T, η, ϕ of K^{\pm}, π^0 and P_T of π^+_{soft})

Comparison of sWeighted data with reweighted RapidSim+EvtGen sample

■ sWeights ■ RapidSim

Figure 12: m_{K+K-}^2

Figure 13: $m_{K^{+}\pi^{0}}^{2}$

Figure 14: $m_{K^-\pi^0}^2$

September 29, 2025

Validation of the AmpGen fitter

- $D^0 \to \pi^+\pi^-\pi^0$ as validation channel
- Full simulation sample is present

Figure 15: $m_{\pi^{+}\pi^{-}}^{2}$

Figure 16: $m_{\pi^{+}\pi^{0}}^{2}$

Figure 17: $m_{\pi^-\pi^0}^2$

Validation of the AmpGen Fitter [2]

Resonance	Our <i>FF</i> ; [%]	Reference FF _i [%]	Fixed/Free c _r
ho(770) ⁺	65.98 ± 1.03	75.07 ± 0.07	fixed
$\rho(770)^{0}$	40.58 ± 0.68	32.89 ± 0.05	free
$\rho(770)^{-}$	29.39 ± 0.26	26.52 ± 0.06	free
$ ho$ (1450) $^+$	0.48 ± 0.41	0.72 ± 0.01	free
$\rho(1450)^{0}$	0.190 ± 0.003	0.03 ± 0.01	fixed
$ ho$ (1450) $^{-}$	0.215 ± 0.003	0.03 ± 0.01	fixed
$\rho(1700)^{+}$	0.87 ± 0.34	0.26 ± 0.02	free
$\rho(1700)^{0}$	1.19 ± 0.04	0.10 ± 0.01	free
$ ho$ (1700) $^{-}$	0.085 ± 0.046	0.07 ± 0.01	free
$f_2(1270)^0$	1.15 ± 0.04	0.59 ± 0.01	free
$\pi\pi$ S-wave (k-Matrix)	2.36 ± 0.04	1.55 ± 0.01	free

 \bullet Observable mismatches are not due to the AmpGen fit \longrightarrow AmpGen fitter works well

Fit to $K^+K^-\pi^0$ sWeights with the reweighted RapidSim+EvtGen sample

Figure 18: $m_{K^+K^-}^2$

Figure 19: $m_{K^+\pi^0}^2$

Figure 20: $m_{K^-\pi^0}^2$

- No visual agreement
- Problem with the relative contributions of the resonances

September 29, 2025

Fit to $K^+K^-\pi^0$ sWeights: fit fractions

Resonance	Our <i>FF</i> ; [%]	BaBar <i>FF</i> ; [%]
K*(892)+	2.7 ± 0.3	$45.2\pm0.8\pm0.6$
$K^*(1410)^+$	13.4 ± 1.1	$3.7\pm1.1\pm1.1$
$K^+\pi^0(S)$	35.1 ± 2.2	$16.3\pm3.4\pm2.1$
$\phi(1020)^{0}$	5.6 ± 0.3	$19.3\pm0.6\pm0.4$
$f_0(980)$	34.4 ± 2.4	$6.7 \pm 1.4 \pm 1.2$
$f_{2}^{'}(1525)$	0.70 ± 0.10	$0.08\pm0.04\pm0.05$
$K^*(892)^-$	0.88 ± 0.13	$16.0\pm0.8\pm0.6$
$K^*(1410)^-$	23.0 ± 1.1	$4.8\pm1.8\pm1.2$
$\mathcal{K}^-\pi^0(\mathcal{S})$	95.0 ± 4.3	$2.7\pm1.4\pm0.8$
$\sum_{i} FF_{i}$	211 ± 7	$115\pm11\pm8$

- Different conventions and normalisation among AmpGen, EvtGen and the BaBar experiment
- Difficulty to map the BaBar values of the coefficients in AmpGen

AmpGen-in-RapidSim alternative strategy

- Sample generated in AmpGen according to the discussed model
 - lterative procedure to find a valid set of coefficient values almost reproducing the BaBar case
- ullet The produced kinematics of D^0 -daughters is used as input for a new signal sample generated in RapidSim

 The obtained data-simulation sample agreement is not optimal but at least improved with respect to the previous case

Comparison of AmpGen-in-RapidSim sample with reweighted RapidSim+EvtGen sample

■ sWeights ■ RapidSim

AmpGen-in-RapidSim strategy: fit result

Visually unsatisfactory

Figure 21: $m_{K^+K^-}^2$

Figure 22: $m_{K^+\pi^0}^2$

Figure 23: $m_{K^-\pi^0}^2$

AmpGen-in-RapidSim strategy: fit fractions

Resonance	Our <i>FF_i</i> [%]]	BaBar <i>FF</i> ; [%]
K*(892)+	34.6 ± 0.5	$45.2 \pm 0.8 \pm 0.6$
$K^*(1410)^+$	7.1 ± 0.7	$3.7\pm1.1\pm1.1$
$K^+\pi^0(S)$	101 ± 6	$16.3\pm3.4\pm2.1$
$\phi(1020)^0$	23.3 ± 0.3	$19.3\pm0.6\pm0.4$
$f_0(980)$	26.9 ± 2.4	$6.7\pm1.4\pm1.2$
$f_{2}^{'}(1525)$	0.012 ± 0.012	$0.08\pm0.04\pm0.05$
K*(892)-	40.2 ± 0.8	$16.0\pm0.8\pm0.6$
K*(1410)-	5.1 ± 0.5	$4.8\pm1.8\pm1.2$
$K^-\pi^0(S)$	20.1 ± 2.9	$2.7\pm1.4\pm0.8$
$\sum_{i} FF_{i}$	259 ± 6	$115\pm11\pm8$

- Still discrepancy with BaBar fit fractions
- Temporarily not possible to reproduce the BaBar result (model) in AmpGen

Conclusion and future perspectives

- Presented preliminary results are not good due to:
 - ▶ missing full $D^* \to D^0 (\to K^+ K^- \pi^0) \pi^+_{soft}$ simulation sample
 - approximate procedures used
- Reliable approach and starting model necessary for the amplitude fit
- Request a full simulation sample within the collaboration
- Get the BaBar sample to be fitted in AmpGen for the determination of the amplitudes complex coefficients
- In the meantime:
 - ▶ Investigation of the underlying relation between the AmpGen and BaBar normalisations
 - Refinement of the offline selection on data

Thanks for your attention!

Backup

33 / 61

Backup: Hlt1 line requirements

$$\chi_{IP}^2 > 7.4 \, (P_T > 25.0 \, \text{GeV}/c)$$
 $ln(\chi_{IP}^2) > ln(7.4) + \frac{1.0}{(P_T - 1.0)^2} + \lambda \left(1 - \frac{P_T}{25.0}\right) \, (P_T \in [1.0, 25.0] \, \text{GeV}/c)$
 $[P_T] = \text{GeV}/c$

Backup: Stripping line requirements

Particle	Quantity	Selection criteria
Global Selection	Number of long tracks	< 180
\mathcal{K}^\pm	PIDK	> 7
	P_T	> 0.5 GeV/ <i>c</i>
K^+ or K^-	P_T	> 1.7 GeV/ <i>c</i>
K^\pm pair	m_{KK}	$< 1.9 \; \mathrm{GeV}/c^2$
π^0	P_{T}	> 0.500 GeV/c
	P_T	> 1.4 GeV/c
D^0	$ m_{K^+K^-\pi^0} - 1.86484 \text{ GeV}/c^2 $	$<$ 0.160 GeV $/c^2$
	$ m_{D^0} - 1.86484 \; { m GeV}/c^2 $	$< 0.150 \; \mathrm{GeV}/c^2$
π_{soft}	P_T	> 0.300 GeV/c
D^{*+}	$m_{D^*}-m_{D^0}$	$< 0.180 \text{ GeV}/c^2$
	$m_{\mathcal{K}^+\mathcal{K}^-\pi^0\pi_{ extsf{soft}}}-m_{\mathcal{K}^+\mathcal{K}^-\pi^0}$	$< 0.185 \text{ GeV}/c^2$

Backup: Hlt2 line + offline selection requirements

Particle	Quantity	Selection criteria
K^\pm	PIDK	> 15
	χ^2_{IP}	> 20
	$ heta_{K\pi_{soft}}$	> 0.001
K^\pm pair	m_{KK}	$< 1.9 \; \mathrm{GeV}/c^2$
	P_T	$> 1.9\;{\sf GeV}/c$
	$ heta_{{m K}^+{m K}^-}$	> 0.001
π^0	P_T	> 1.7 GeV/c
	$m_{\pi^{0}}$	$\in [0.107, 0.163] \text{ GeV}/c^2$
D^0	P_T	> 6.0 GeV/ <i>c</i>
	$m_{K^+K^-\pi}$ o	$\in [1.700, 2.020] \text{ GeV}/c^2$
	m_{D} o	\in [1.80884, 1.92884] GeV/ c^2
	$\mathit{arcos}(\mathrm{DIRA})$	$< 0.05 \mathrm{\ rad}$
D^{*+}	$m_{D^{st+}}-m_{D^{f 0}}$	$> 0.1~{ m GeV}/c^2$
	$m_{D^{*+},DTF}-m_{D^{0},DTF}$	$\in [0.1396, 0.155] \text{ GeV}/c^2$
	$m_{D^{*+}}-m_{D^{f 0}}-m_{\pi_{f soft}}$	$\in [-0.999, 0.04545] \text{ GeV}/c^2$
	$m_{K^+K^-\pi^0\pi_{soft}} - m_{K^+K^-\pi^0} - m_{\pi_{soft}}$	$\in [-0.185, 0.05543] \text{ GeV}/c^2$
	$\log(\chi^2)$	< 2.3

Backup: Implemented amplitude model

- S-Wave states:
 - $ightharpoonup K^+K^-$: $f_0(980)^0$ (Flatte)
 - $ightharpoonup K^+\pi^0$: $K_0^*(1430)^+$ (LASS)
 - $ightharpoonup K^-\pi^0$: $K_0^*(1430)^-$ (LASS)
- P-Wave states:
 - $ightharpoonup K^+K^-: \phi(1020)^* (RBW)$
 - $K^+\pi^0$: $K^*(892)^+, K^*(1410)^+$ (RBW)
 - $K^-\pi^0$: $K^*(892)^-, K^*(1410)^-$ (RBW)
- D-Wave states:
 - K^+K^- : $f_2'(1525)$ (RBW)

Backup: Resonance lineshape

- P and D-waves: $\phi(1020)^0$, $K^*(892)^{\pm}$, $K^*(1410)^{\pm}$, $f_2(1525) \longrightarrow \text{RBW}$
- S-waves: $K_0^*(1430)^{\pm}$ $(K^{\pm}\pi^0)$, $f_0(980)$ (K^+K^-) \longrightarrow LASS $(K^{\pm}\pi^0)$ and Flatté (K^+K^-)

Backup: RBW, LASS and Flatté shapes

• RBW: resonance with a dominant decay channel

$$\mathcal{A}_{BW}(s) = rac{1}{(m_0^2-s)-im_0\Gamma(m)}$$

• LASS: $K\pi$ S-wave system with both resonant and non-resonant terms

$$\mathcal{A}_{K\pi(S)}(s) = \underbrace{\mathcal{A}_{NR}(s)}_{Non \, Resonant} + \underbrace{c}_{complex \, phase} \cdot \underbrace{\mathcal{A}_{R}(s)}_{Resonant(RBW)}$$

• Flatté: KK S-wave system for a resonance with coupled channels $(\pi\pi, K\bar{K})$

$$\mathcal{A}_{Flatt}(s) = rac{1}{m_0^2 - s - im_0(g_{\pi\pi}
ho_{\pi\pi}(s) + g_{KK}
ho_{KK}(s))}$$

Backup: Resolved 2024 sample [1]

Backup: Resolved 2024 sample [2]

Backup: Integration technique [1]

$$\begin{split} P_s(x;c) &= \frac{\epsilon(x)S(x;c)\Phi_3(x)}{I(c)} = \frac{\epsilon(x)S(x;c)\Phi_3(x)}{\int \epsilon(x)S(x;c)\Phi_3(x)d^2x} \\ P^{\text{gen}}(x;c) &= \frac{\epsilon(x)S^{\text{gen}}(x)\Phi_3(x)}{I^{\text{gen}}} = \frac{\epsilon(x)S^{\text{gen}}(x)\Phi_3(x)}{\int \epsilon(x)S^{\text{gen}}(x)\Phi_3(x)d^2x} \\ &- \log \mathcal{L} = -\log(\prod_{j \in \textit{events}} P_j(x_j;c)) = -\sum_{j \in \textit{events}} \log(P_j(x_j;c)) \\ &- \log \mathcal{L} = -\sum_{j \in \textit{events}} \log(\sum_{i \in \textit{pdf comp}} P_{ji}(x_j;c)) = -\sum_{j \in \textit{events}} \log(P_s(x_j;c)) \\ &- \log \mathcal{L} = \sum_{j \in \textit{events}} \left[-\log S(x_j;c) - \log(\epsilon(x_j)\Phi_3(x_j)) + \log I(c) \right] \\ &- \log \mathcal{L} = \sum_{j \in \textit{events}} \left[-\log S(x_j;c) + \log I(c) \right] \end{split}$$

Backup: Integration technique [2]

$$I(c) = \int \epsilon(x)S(x;c)\Phi_{3}(x)d^{2}x = \int \frac{\epsilon(x)S(x;c)\Phi_{3}(x)}{P^{gen}}P^{gen}d^{2}x$$

$$I(c) = I^{gen}\int \frac{\epsilon(x)S(x;c)\Phi_{3}(x)}{\epsilon(x)S^{gen}(x)\Phi_{3}(x)}P^{gen}d^{2}x = I^{gen}\int \frac{S(x;c)}{S^{gen}(x)}P^{gen}d^{2}x$$

$$I(c) = I^{gen}\mathbb{E}_{P^{gen}}\left[\frac{S(x;c)}{S^{gen}(x)}\right] = I^{gen}\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}\frac{S(x;c)}{S^{gen}(x)}$$

$$-\log \mathcal{L} = \sum_{j \in \text{ events}}\left[-\log S(x_{j};c) + \log\left(\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}\frac{S(x;c)}{S^{gen}(x)}\right)\right]$$

Backup: Iterative procedure [1]

• The difference is just in the scale of the couplings

$$A^{2} = |c_{1}A_{1} + c_{2}A_{2} + \dots + c_{n}A_{n}|^{2} = |a_{1}e^{i\phi_{1}}A_{1} + a_{2}e^{i\phi_{2}}A_{2} + \dots + a_{n}e^{i\phi_{n}}A_{n}|^{2}$$
$$= |1 \cdot e^{i\cdot 0}A_{1} + a'_{2}e^{i\phi'_{2}}A_{2} + \dots + a'_{n}e^{i\phi'_{n}}A_{n}|^{2}$$

- ullet The phase differences respect the phase of the fixed resonance are the same o same relative phases as BaBar;
- Need a way to provide every term with the right relative strength (FF_i)

Backup: Iterative procedure [2]

- Initial setting:
 - $ightharpoonup \phi_r$ fixed to the BaBar values
 - $ightharpoonup a_r$ set to the $\sqrt{FF_r}$
- Generation of a MC sample;
- Fit to the latter with one resonance $(K^*(892)^+)$ and all phases fixed;
- Upgrade a_r as:

$$a_r \leftarrow a_r \sqrt{\frac{FF_r^{exp}}{FF_r^{meas}}}$$

• Repeat steps 2-3 till getting the BaBar fit fractions.

45 / 61

Backup: Iterative procedure [3]

$$FF_r = \frac{\int |a_r e^{i\phi_r} A_r|^2 d\tau}{\int |\sum_r a_r e^{i\phi_r} A_r|^2 d\tau}$$

In a sense it's like:

$$FF_r \sim a_r^2$$

that's why we start with:

$$a_r = \sqrt{FF_r^{BaBar}}$$

and then upload it with:

$$a_r \sqrt{\frac{FF_r^{BaBar}}{FF_r^{meas}}}$$

Backup: Iterative procedure [4]

- Iterative procedure following the mentioned strategy
- In every step fit fractions are compared to BaBar values, if their difference is lower than 1% in modulus the script is stopped
- In the case of fit fractions not matching perfectly, the ones closer have been retained
 - **Evaluation** for every step of a cost function: $\sum_r |FF_r^{BaBar} FF_r^{meas}|$
 - In the next step the amplitude magnitudes (a_r) are upgraded only if the cost function is lower than the previous step
- ullet ightarrow after 2 rounds the script stops

Backup: Iterative procedure [5]

Backup: Iterative procedure [6]

Backup: Iterative procedure [7]

Backup: Iterative procedure [8]

Resonance	Our <i>FF_i</i> [%]]	BaBar <i>FF_i</i> [%]
K*(892)+	37.5 ± 0.3	$45.2\pm0.8\pm0.6$
$K^*(1410)^+$	1.45 ± 0.16	$3.7\pm1.1\pm1.1$
$K^+\pi^0(S)$	12.9 ± 0.7	$16.3\pm3.4\pm2.1$
$\phi(1020)^0$	13.5 ± 0.2	$19.3\pm0.6\pm0.4$
$f_0(980)$	4.9 ± 0.4	$6.7\pm1.4\pm1.2$
$f_{2}^{'}(1525)$	0.08 ± 0.02	$0.08\pm0.04\pm0.05$
K*(892)-	13.0 ± 0.2	$16.0\pm0.8\pm0.6$
$K^*(1410)^-$	4.1 ± 0.15	$4.8\pm1.8\pm1.2$
$K^-\pi^0(S)$	1.9 ± 0.3	$2.7\pm1.4\pm0.8$
$\sum_{i} FF_{i}$	89.4 ± 0.3	$115\pm11\pm8$

Backup: Focus on $f_0(980)$ and $a_0(980)$ resonances

- BaBar considers only one of the two at the time
- Why?
- $f_0(980)$
 - ① Charge: 0
 - Spin: 0
 - **3** Mass: $980 MeV/c^2$
 - **4** Width: $10 100 MeV/c^2$
 - **5** Coupled channels: $\pi\pi$, $K\bar{K}$

- $a_0(980)$
 - Charge: 0
 - Spin: 0
 - **3** Mass: $980 MeV/c^2$
 - **1** Width: $50 100 MeV/c^2$
 - **5** Coupled channels: $\eta \pi, K\bar{K}$
- $A_{f_0}A_{a_0}$ gave one of the biggest interference fractions ($\sim 50\%$)
- Inclusion of just one of the two: $f_0(980)$

Backup: BaBar LASS

• BaBar uses the LASS amplitude (from $K^-\pi^+ \to K^-\pi^+$ elastic scattering) for describing the D^0 decays into $K^\pm\pi^0$ S-wave states

$$A_{K\pi(S)}(s) = \frac{\sqrt{s}}{p} sin(\delta(s))e^{i\delta(s)}$$

$$\delta(s) = cot^{-1} \left(\frac{1}{pa} + \frac{bp}{2}\right) + cot^{-1} \left(\frac{M_0^2 - s}{M_0\Gamma_0 \frac{M_0}{\sqrt{s}} \frac{p}{p_0}}\right)$$

$$a = 1.95 \pm 0.09 \text{ GeV}^{-1}/c \quad b = 1.76 \pm 0.36 \text{ GeV}^{-1}/c$$

- ullet The unitary nature of the latter eq provides a good description of the amplitude up to the $K\eta'$ threshold.
- The first term is a non-resonant contribution defined by a scattering length a and an effective range b, and the second term represents the $K_0^*(1430)$ resonance. The phase space factor \sqrt{s}/p converts the scattering amplitude to the invariant amplitude.

Backup: Extra on BaBar LASS

- ullet The unitary nature of the latter eq provides a good description of the amplitude up to the $K\eta'$ threshold
- $K_0^*(1430)$ Mass: $1425 \pm 50 MeV/c^2$, Width: $270 \pm 80 MeV$
 - ightharpoonup igh
 - ightharpoonup igh
- the description provided by the latter eq works up to the $K\eta'$ threshold
- for $\sqrt{s} \sim m(K\eta')$ the $K\eta'$ channel opens therefore an additional term should be added in the eq (sort of $K\pi \leftrightarrow K\eta'$ interference)?
 - like a coupled channels system (e.g. $f_0(980)$ in the KK S-Wave)

Backup: AmpGen LASS

• Brief description of the $K\pi$ S-wave based on the fits to scattering data. The LASS parametrization of the $K\pi$ S-wave is defined from fits to elastic $K\pi$ scattering data, which is approximately up to the $K\eta'$ threshold.

$$tg(\phi_{NR}) = \frac{2aq}{2 + arq^2} \quad tg(\phi_{BW}) = \frac{m\Gamma}{m^2 - s}$$
$$a = 2.07 \quad r = 3.32$$

• normally associated to the $K_0^*(1430)$ resonance.

$$\mathcal{A} = rac{2a\sqrt{s}}{2+arq^2-2iaq} + rac{2+arq^2+2iaq}{2+arq^2-2iaq} \mathcal{A}_{\mathcal{BW}}(s) = A_{NR}(s) + A_{BW}^{'}(s)$$

 this expression resembles the sum of a BW with a slowly varying nonresonant component, the two parts are sometimes split apart with an additional production amplitude placed on one or the other

Backup: Comparison of BaBar and AmpGen LASS shapes

BaBar

$$A_{K\pi(S)}(s) = \frac{\sqrt{s}}{p} sin(\delta(s)) e^{i\delta(s)}$$

$$\delta(s) = cot^{-1} \left(\frac{1}{pa} + \frac{bp}{2}\right) + cot^{-1} \left(\frac{M_0^2 - s}{M_0 \Gamma_0 \frac{M_0}{\sqrt{s}} \frac{p}{p_0}}\right)$$

AmpGen

$$\mathcal{A} = \frac{2a\sqrt{s}}{2 + arq^2 - 2iaq} + \frac{2 + arq^2 + 2iaq}{2 + arq^2 - 2iaq} \times \frac{m\Gamma_0}{m^2 - s - im\Gamma} \frac{\sqrt{s}}{q}$$

 —> the two shapes provide quantitatively the same amplitude

Backup: BaBar Flatté

• The D^0 decay to a K^+K^- S-wave state is described by a coupled-channel BW amplitude for the $f_0(980)$ and $a_0(980)$ resonances, with their respective couplings to $\pi\pi$, $K\bar{K}$ and $\eta\pi$, $K\bar{K}$ final states.

$$A_{f_0}(s) = rac{M_{D^0}^2}{M_0^2 - s - i(g_1^2
ho_{\pi\pi} + g_2^2
ho_{K\bar{K}})}$$
 $ho = 2p/\sqrt{s}$
 $M_0 = 965 \pm 10 MeV/c^2$
 $g_1^2 = 165 \pm 18 MeV^2/c^4$ $g_2^2/g_1^2 = 4.21 \pm 0.33$

- the $f_0(980)$ values come from the BES collaboration
 - ▶ BES (Beijing Spectrometer) is an experiment at the Beijing Electron Positron Collider (BEPC)
- for the $a_0(980)$ the Crystal Barrel values are used [not reported]
 - Crystal Barrel was a detector at the Low Energy Antiproton Ring (LEAR) facility at CERN

Backup: AmpGen Flatté

- Lineshape to describe resonances with coupled channels such as $f_0(980)$ and $a_0(980)$.
- The lineshape was first described by S.M. Flatté [https://www.sciencedirect.com/science/article/pii/0370269376906547] and describes a single isolated resonance that couples to a pair of channels, which can have a large impact on the lineshape if the opening of one of the channels is near to the resonance mass.

$$egin{align} A_{f_0}(s) &= rac{1}{m^2 - s - im\Gamma(s)} \ \Gamma(s) &= rac{g_{\pi\pi}}{s} \lambda^{1/2}(s, m_\pi^2, m_\pi^2) + rac{g_{KK}}{s} \lambda^{1/2}(s, m_K^2, m_K^2) \ g_{\pi\pi} &= 0.165 \, GeV/c^2 \quad rac{g_{KK}}{g_{\pi\pi}} = 4.21 \ \end{array}$$

• this is for the $f_0(980)$ resonance.

Backup: More on the Flatté parametrization [1]

Breit-Wigner:

$$A(s) = \frac{1}{m_r^2 - s - im_r \Gamma(s)}$$

- ullet the RBW model is ideal when there is only one relevant decay channel (e.g. $\phi(1020) o K^+K^-)$
- the other channels are much suppressed or not accessible kinematically; so only one channel contributes significantly
- the BW has a constant width o function of a single channel phase space
- What changes for the $f_0(980)$?
 - $f_0(980)$ can decay into $\pi\pi$ and $K\bar{K}$ $(K^+K^-, K^0\bar{K}^0)$
 - ▶ the mass of $f_0(980)$ is close to the $K\bar{K}$ threshold: $m(K^+K^-) \simeq 988 MeV/c^2$

Backup: More on the Flatté parametrization [2]

Flatté model:

$$A_{f_0}(s) = rac{1}{m^2 - s - i(g_1^2
ho_{\pi\pi}(s) + g_2^2
ho_{K\bar{K}}(s))} \
ho = rac{2p}{\sqrt{s}} \quad p = rac{\lambda^{1/2}(s, m_K^2, m_K^2)}{2\sqrt{s}} \quad
ho = rac{\lambda^{1/2}(s, m_K^2, m_K^2)}{s}$$

- differently from the BW the total width depends on s and on which channels are open (kinematically allowed)
- there are coupling effects between the channels (interference)
 - lacktriangle being close to the $Kar{K}$ threshold such effects and the dynamic effects at the threshold are important
- When s is under threshold for $K\bar{K}$ ($\sqrt{s} < 2m(K\bar{K})$), $\rho_{K\bar{K}}$ becomes immaginary (cause $\lambda^2 < 0$); for s getting close to the threshold this immaginary term varies rapidly.
- All this is treated unitarily with the Flatté model

Backup: Comparison of BaBar and AmpGen Flatté shapes

BaBar

$$A_{f_0}(s) = \frac{M_{D^0}^2}{M_0^2 - s - i(g_1^2 \rho_{\pi\pi} + g_2^2 \rho_{K\bar{K}})} \quad \rho = 2p/\sqrt{s}$$

In the CM frame: $p=|\vec{p}|=\frac{\lambda^{1/2}(s,m_1^2,m_2^2)}{2\sqrt{s}}$, where λ is the Kallen function. $\rho=2p/\sqrt{s}$ in the formula becomes $\frac{\lambda^{1/2}}{s}$

$$A_{f_0}^{BaBar}(s)
ightarrow rac{M_{D^0}^2}{M_0^2 - s - i(g_1^2 rac{\lambda_{\pi\pi}^{1/2}}{s} + g_2^2 rac{\lambda_{KK}^{1/2}}{s})}$$

AmpGen

$$A_{f_0}^{AmpGen}(s) = \frac{1}{m^2 - s - im\left(g_{\pi\pi}\frac{\lambda^{1/2}(s, m_{\pi}^2, m_{\pi}^2)}{s} + g_{KK}\frac{\lambda^{1/2}(s, m_{K}^2, m_{K}^2)}{s}\right)}$$