Deep Learning Studies for the Measurement of the Top Quark Mass ### **David Okpaga** MSc Defense September 29, 2025 **Supervisors** Dr. Andrea Helen Knue Dr. Javier Jimenez Pena "Are you sitting comfortably? Then we'll begin..." # Measurement Idea - Baseline approach ### ***** Why the top quark mass matters - Heaviest known fundamental particle \mathbf{m}_{top} plays a key role in: - Electroweak precision tests - Stability of the SM vacuum - Connection to Higgs boson physics - The goal is to measure m_{top} by reconstructing top decays in the **lepton** + **jets** channel. - Using two kinematic observables: - $\bullet \quad M_w^{reco} = m(q_{1_1}q_2)$ - $M_{lb}^{reco} = m(b_{lep_s} lep)$ - ***** Baseline method: Kinematic Likelihood Fit (KLFitter) - Assigns jets to partons using likelihood maximization. - Achieves ~63% correct matching efficiency. - Provides a physics-motivated benchmark, but still limited by combinatorial background. # Why go beyond KLFitter? #### Limitations of KLFitter - Efficiency capped at ~63% - Sensitive to resolution effects and wrong jet assignments - Struggles with light-quark assignment from W decays (low- p_T jets often mis-assigned) #### **!** Impact of limitations - Lower purity in reconstructed observables - Reduced statistical precision in mass measurement - Bias from incorrect jet-parton permutations These limitations motivate more flexible, data-driven methods to capture complex correlations — leading to machine learning approaches (DNN). ### **Production & Decay** - Top quark pair are produced in the largest cross-section of all top processes. - We expect about 51 million ttbar events in the lepton+jets channel in the dataset (before selection) - 4 Quarks \rightarrow 4 Jets - 4 quarks hadronize into jets: - o 2 b-jets (tagged) - o 2 light jets (from W decays) - 1 lepton - 1 neutrino inferred via missing E_T ### **Jet-Parton reconstruction** #### The Two Observables: Option 1: $(M_t^{reco})^2 = |p_b + p_q + p_{q^2}|^2 \rightarrow \text{Direct sensitivity but high uncertainty}$ - Reconstruct the top mass from the b-jet + two light jets - Uses 3 jets - **❖ Advantage** → Directly reconstruct hadronic top mass #### Problem! - Jets have large experimental uncertainties: - Jet energy scale uncertainty - Jet energy resolution - M_{top} measurement has larger uncertainty #### Option 2: $(M_{b_0}/e^{peco})^2 = |p_b + p_e|^2 \rightarrow \text{Indirect sensitivity but lower uncertainty}$ - Reconstruct the top mass from the b-jet + lepton - Uses 1 jet - $\begin{tabular}{ll} $ $ $\textbf{Advantage} $ \to $ lepton momentum has much smaller uncertainty than jets \\ \end{tabular}$ - \rightarrow m_{top} measurement has smaller uncertainty #### Problem! • Also depends on correctly assigning the **b-jet and lepton pair** (combinatorial problem). # Jet-To-Quark Assignment Classes (Jet mapping) | S/N | b _{had} | q_1 | q ₂ | b _{lep} | |-----|------------------|-------|----------------|------------------| | 1 | Jet1 | Jet2 | Jet3 | Jet4 | | 2 | Jet1 | Jet2 | Jet4 | Jet3 | | 3 | Jet1 | Jet3 | Jet4 | Jet2 | | 4 | Jet2 | Jet1 | Jet3 | Jet4 | #### Output Y: - 24 possible permutations - 12 valid permutations of 4 jets assigned to 4 quarks (after W jet symmetry) - In reality, we have less than 12 permutations if only b-jets are allowed in the position of b-quarks. ### Combinatorial background from wrong jet-parton assignments Now, the main problem: - To compute the **observables**, we must assign which jet corresponds to which **quark**: - Which jet is **b**? - Which jets are q and q?? ### **DNN Architecture** - Signal: correct permutation, background: all wrong permutations - Input variables: four momenta of lepton and jets and missing E_T - For each event, all permutations are evaluated and the one obtaining the highest DNN score, DNN_{High}, is selected. ### **Event selection** #### **Event selection criteria:** - Single-lepton channel: exactly one isolated electron or muon. - Events required to pass a single-lepton trigger (electron or muon + jets). - At least one reconstructed primary vertex. - At least four reconstructed jets with $p_T > 25 \ GeV$ and $|\eta| < 2.5$. - At least two jets must be b-tagged. # **Jet-Parton matching** #### Matching criteria: - Only **b-tagged jets** can be assigned to **b-quark positions** (i.e., b_{had} , b_{lep}) - Only untagged jets are allowed for light-quark positions (i.e., q_1, q_2) from hadronic W decay - Matching criterion: if ΔR (parton, jet) < 0.3: consider jet as matched - Matching criterion for event: all four partons are matched to a jet ### Why use $p_T > 25 \text{ GeV}$ for selection: - **Jets with higher** p_T **have smaller uncertainties** and are more likely to be well-reconstructed. - For lower p_T , jets are harder to match accurately due to increased detector **uncertainties**. - For a jet with p_T (J3) = 24.5 GeV, it **does not** meet the $p_T > 25$ GeV requirement - \circ J3 missing \rightarrow lq2 does not have a matched jet (lq2 is unmatched). - The training takes 2 days and it corresponds to the 2017 dataset and I used simulation for 172.5 GeV - The training was done for 5 mass points (171 GeV, 172 GeV, 172.5 GeV, 173 GeV, 174 GeV) # **Optimization features** - Number of nodes in input layer: 22 variables - Number of nodes in hidden layers: 30, 50, 20, 3 - Output layer: 1 - N_{batch}: 5000 - N_{epoch}: 100 - Optimisation algorithm: ADAM - Learning rate: 0.005 - Loss function: Binary cross-entropy - Activation function (hidden layer): ReLU - Activation function (output layers): Sigmoid # First DNN training: Accuracy - DNN reaches 82–83% accuracy after ~30 epochs - Both training and test accuracy curves are closely aligned - Very small gap between train and test accuracy → excellent generalization - No signs of overfitting # First DNN training: Model loss - Both show a smooth exponential decay from ~600+ down to below ~370 - Train and Test Loss are almost identical overlap closely - Very good generalization - No overfitting - Stable convergence # DNN matching performance at $m_{top} = 172.5$ GeV The matching efficiency is defined as the fraction of matchable events among all selected events: $$\epsilon_{matching} = \frac{N_{matchable}}{N_{matchable} + N_{unmatchable}} = \frac{N_c + N_i}{N_c + N_i + N_u}$$ The reconstruction efficiency is the fraction of correctly matched events among all matched events: $$\epsilon_{CM} = \frac{N_C}{N_C + N_i}$$ The selection purity is the fraction of correctly matched events among all selected events, regardless of matchability: $$\pi_{CM} = \frac{N_C}{N_C + N_i + N_M}$$ - Low matching efficiency in *tt* events - \rightarrow Caused by low- p_T jets from W boson decays failing selection. # First reconstruction efficiency **Reconstruction efficiency:** Higher for light quarks (~89%) compared to b-quarks (~83%) and full event ~79%. • Due to simpler kinematics, light quarks are easier to reconstruct. # Matching efficiency and purity **Matching efficiency:** High for b-quarks (~92%), moderate for light quarks (~72%). **b-jets** are more accurately matched due to **b-tagging**. Purity: High for b-quarks (~77%) due to better matching & less background, lower for light quarks (~65%). # The impact of $P_T > 20$ GeV on DNN performance #### If I lower P_T: - Do I get more pileup? High prob. of more pileup contamination - Do I get larger JES uncertainty? Highly possible - Higher event yield \rightarrow less clean jets - Poorer energy resolution - Worse b-tagging performance - Longer training, more permutations - More jets = More combinations = More permutations (e.g., using 6 jets instead of 4). # Effect of p_T cuts on efficiency and purity | Quantity | $p_T > 25 \text{ GeV}$ | $p_T > 20 \text{ GeV}$ | | | | |---------------------------------|------------------------|------------------------|--|--|--| | Overall metrics | | | | | | | Matching efficiency (%) | 45.88 ± 0.05 | 48.29 ± 0.39 | | | | | Reconstruction efficiency (%) | 79.24 ± 0.06 | 71.90 ± 0.50 | | | | | Purity (%) | 36.35 ± 0.05 | 34.72 ± 0.37 | | | | | Reconstruction efficiencies (%) | | | | | | | $b_{ m lep}$ | 80.30 ± 0.04 | 81.35 ± 0.31 | | | | | $b_{ m had}$ | 79.43 ± 0.05 | 81.52 ± 0.31 | | | | | lq_1 | 89.08 ± 0.04 | 84.85 ± 0.32 | | | | | lq_2 | 89.07 ± 0.04 | 85.22 ± 0.32 | | | | | m_W | 83.09 ± 0.06 | 76.88 ± 0.44 | | | | | Matching efficiencies (%) | | | | | | | $b_{ m lep}$ | 92.19 ± 0.03 | 91.39 ± 0.22 | | | | | $b_{ m had}$ | 92.21 ± 0.03 | 91.90 ± 0.21 | | | | | lq_1 | 72.56 ± 0.05 | 74.60 ± 0.34 | | | | | lq_2 | 72.79 ± 0.05 | 74.53 ± 0.34 | | | | | m_W | 51.36 ± 0.05 | 54.91 ± 0.38 | | | | | Purities (%) | | | | | | | $b_{ m lep}$ | 74.02 ± 0.05 | 74.35 ± 0.34 | | | | | $b_{ m had}$ | 73.24 ± 0.05 | 74.91 ± 0.33 | | | | | lq_1 | 64.64 ± 0.05 | 63.30 ± 0.37 | | | | | lq_2 | 64.83 ± 0.05 | 63.51 ± 0.37 | | | | | m_W | 42.67 ± 0.05 | 42.21 ± 0.38 | | | | ### **Reconstruction Efficiencies:** - Increase for b_{lep} , b_{had} at $p_T > 20$ GeV due to more signal events at lower threshold Decrease for light quarks due to more low p_T jets that are harder to - **Matching Efficiencies:** match correctly. - Increase for lq_1 , lq_2 at $p_T > 20 \, GeV$ due to more inclusive jet reconstruction. - Decrease for m_W and b_{lep} due to background contamination at lower p_T . #### **Purity:** - Increase for b_{lep} , b_{had} at $p_T > 20 \text{ GeV}$ because lower threshold allows more high-quality b-jet events to be selected, improving signal purity. - Decrease for other variables (light quarks, m_W (due to increased background contamination as more low p_T events are included. # Comparison of m_t hypotheses in the DNN output **DNN score comparison:** Both mass hypotheses show clear peaks as the DNN score increases. #### **Ratio plots:** • Ratios (172.5/171 and 172.5/172) stay near 1, indicating minimal difference at high DNN scores. ## **Reconstruction DNN Output** - Sharp peak at $\sim 1 \rightarrow DNN$ confidence in classification. - Correctly matched (blue) dominate near 1, unmatched (red) at lower DNN scores. - Can we improve the reconstruction by cutting the on the DNN output? # Impact of DNN cut on reconstruction efficiency **Reconstruction efficiency:** Increases from \sim 79% to \sim 90% with higher DNN cuts, selecting higher-quality events. # Impact of DNN cut on matching efficiency & purity Matching efficiency: Improves with higher DNN cuts, reaching up to ~79%, enhancing signal-to-background ratio. **Purity:** Increases to ~71% as DNN cut improves, reducing background contamination. ## Effect of DNN cut on m_W and m_{Ib} distributions - DNN cut (less unmatchable events) \rightarrow m_w distribution becomes more symmetric and narrow. - Increased signal-to-background: Correctly matched events dominate around $m_W \approx 80 \text{GeV}$. - Better resolution & sharper mass peak \rightarrow Improved precision for m_W and m_{lb} . - For m_{lb} the effect is small because the efficiency for the b-quark was very high before the cut. ### **Conclusions** - Reconstruction efficiency, matching efficiency, and purity were enhanced through DNN cut and kinematic selections. - DNN cuts, combined with m_W and m_{lb} cuts, improved signal-to-background ratio and reduced unmatchable events. - Clean mass peaks and improved resolution, leading to higher precision in top-quark mass measurement was achieved. - The study demonstrates that a well-trained DNN provides a robust tool for high-precision top-quark mass measurements at ATLAS. D. Okpaga | Sept 29, 2025 # **BACKUP** # Low P_T selection DNN training: Accuracy - DNN reaches 80% accuracy after ~30 epochs - Test accuracy fluctuates but improves, aligning with training. - Slight **overfitting** observed, with the gap between training and test accuracy narrowing. - Convergence occurs after several epochs, showing stable model learning. ## Low P_T selection DNN training: Loss - Both decreases rapidly from ~600 to ~450. - Train and test loss are almost identical, indicating good generalization - Stable convergence, no significant overfitting, with loss flattening as training progresses. - Model loss stabilizes, showing reliable training and test outcomes. # Comparison of m_t hypotheses in the DNN output - **DNN score comparison:** Both mass hypotheses show **similar peaks** at high DNN scores. - Ratio plots: Ratios (172.5/173, 172.5/174) stay near 1, indicating minimal mass difference. - **DNN confidence:** The DNN **confidently classifies** the masses with **minimal variation**. # Effect of m_W , m_{lb} , & DNN cuts on efficiency and purity - **Reconstruction efficiency:** Steady increase from $\sim 80\%$ to $\sim 90\%$ as DNN, m_W , and m_{lb} cuts are applied, selecting higher-quality events. - Matching efficiency: Increases to ~80%, with higher cuts improving the signal-to-background ratio by removing incorrect matches. - **Purity:** Improves to ~72%, indicating a significant reduction in background contamination as the DNN cut increases. ### **Reconstruction DNN Output** - Sharp peak at $\sim 1 \rightarrow$ DNN confidence in classification. - Correctly matched (blue) dominate near 1, unmatched (red) at lower DNN scores. - About **85%** of events correctly matched near 1. - Sharper peak for correctly matched events. - Reduced incorrectly matched/unmatched events after cuts. - Effective kinematic cuts improve purity without significant efficiency loss.