

Search for Charged Higgs Bosons Decaying to a Neutral Higgs Boson with the ATLAS Detector at CERN

Adwait Meppurath

Supervisor: doc. Dr. André Sopczak

Master Thesis Presentation

September 29, 2025

UNIVERSITÉ
Clermont Auvergne

ALMA MATER STUDIORUM Università di Bologna technische universität dortmund

Outline

- 1. Introduction
 - · Theory, motivation and setting the premise
- 2. METHODOLOGY
 - Quick overview of methods of analysis and tools used
- 3. ML DIAGNOSTICS
 - · Summary of classifier performance
- 4. DATA-DRIVEN FAKE ESTIMATION
 - Results of template-fits to estimate fake-leptons in the background
- 5. ANALYSIS SENSITIVITY
 - Summary plot of sensitivity of the analysis towards a potential signal
- 6. CONCLUSION AND OUTLOOK
 - Overview of achieved results and immediate future extensions to this work

A. Meppurath IMAPP Master Thesis 1/5

Introduction

Two-Higgs Doublet Model

- One of the simplest and most compelling extensions to the Higgs sector cornerstone of the SUSY framework [1]
- 2HDM type II (the focus of this study) is the Higgs sector of the MSSM [1]
- 2HDM could potentially provide additional sources of CP violation in the weak interaction and potentially contribute to the baryon asymmetry in the universe [2], [3]
- Strong motivations to search for H^+ under the 2HDM type II model.

A. Meppurath IMAPP Master Thesis 2/5

Theoretical Structure

Introduces a second scalar complex doublet to EW Lagrangian. Resulting in potential,

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c] + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + [\frac{1}{2} \lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.]$$
(1)

Expansion around VEVs,

$$\Phi_{1,2} = \begin{pmatrix} \Phi_{1,2}^+ \\ (v_{1,2} + h_{1,2} + i\eta_{1,2})/\sqrt{2} \end{pmatrix}$$
 (2)

8 degrees of freedom, 5 physical particles after EWSB.

A. Meppurath IMAPP Master Thesis 3/5

Two-Higgs Doublet Model

- 1. Two CP-even scalars an "SM-like" h and a heavy scalar H
- 2. A CP-odd pseudoscalar A
- 3. Two charged Higgs bosons H^{\pm}

 \rightarrow

The focus of this study

A. Meppurath IMAPP Master Thesis 4/5

Two-Higgs Doublet Model Type II

Four distinct **types** of 2HDM after Z_2 is imposed on the Lagrangian to avoid FCNCs. For **type II** (focus of this study), the Yukawa sector is,

$$\mathcal{L}_{H^{\pm}} = -H^{+}(\frac{\sqrt{2}V_{ud}}{v}\bar{u}(m_{u}(\cot\beta)P_{L} - m_{d}(\tan\beta)P_{R})d - \frac{\sqrt{2}m_{l}}{v}(\tan\beta)\bar{\nu}I_{R}) + h.c, \quad (3)$$

where
$$an eta = rac{v_2}{v_1}$$
 and $v = \sqrt{v_1^2 + v_2^2} = 246~{
m GeV}$

 \Rightarrow Couplings are proportional to the fermion masses. Decays to t, b, τ dominate, but the chosen parameter space (tan $\beta=20$) ensures $H^\pm \to W^\pm h$ dominates over $H^\pm \to tb$ [4]

A. Meppurath IMAPP Master Thesis 5/5

Feynman Diagram : tbH^+ **Production and** $2I_{SS}1\tau$ **Final State**

Figure 1: Associative H^+ production with t and b and subsequent decay to the $2I_{SS}1\tau_{had}$ final state

A. Meppurath IMAPP Master Thesis 6/5

Section Summary

- Second complex scalar doublet added to EW Lagrangian
- EWSB now results in 5 physical particles, two of them are charged Higgs
- Decay channels of charged Higgs are identified for type II 2HDM and appropriate parameter space is chosen to study $H^+ \to W^+ h$.
- Complex, multi-jet final state with missing p_T requires good signal-background separation

A. Meppurath IMAPP Master Thesis 7/

Methodology

 $\textbf{Fundamental goal}: Test \ signal \ hypothesis \ with \ profile-likelihood \ fit$

A. Meppurath IMAPP Master Thesis 8/

Fundamental goal: Test signal hypothesis with profile-likelihood fit

Statistical model: MC samples of SM backgrounds and multiple signal hypotheses characterized by the H^+ mass.

A. Meppurath IMAPP Master Thesis 9

Fundamental goal: Test signal hypothesis with profile-likelihood fit

Statistical model: MC samples of SM backgrounds and multiple signal hypotheses characterized by the H^{\pm} mass.

What's done in this study: Expected sensitivity towards a potential signal before the model is tested on recorded ATLAS data (Blinded fit). Estimating signal strength in the background-only hypothesis.

A. Meppurath IMAPP Master Thesis 10/8

Fundamental goal: Test signal hypothesis with profile-likelihood fit

Statistical model: MC samples of SM backgrounds and multiple signal hypotheses characterized by the H^{\pm} mass.

What's done in this study: Expected sensitivity towards a potential signal before the model is tested on recorded ATLAS data (Blinded fit). Estimating signal strength in the background-only hypothesis.

What's covered here: Producing signal MC samples, Custom features in datasets, Optimal classifier, Data-driven fake-lepton estimation

A. Meppurath IMAPP Master Thesis 11/

Monte Carlo Production with ATLAS Athena : Signal (tbH^+)

- Signal MC samples are produced with MadGraph5AMC@NLO, and showering is handled by Pythia8. PDF Base Fragment used: NNPDF30NLO in the 4 Flavour Scheme
- The BSM Model used for MC production is 2HDMTypeII
- In total 14 signal samples are used in this analysis, each characterized by the hypothesized H⁺ mass.
- $H^+ \rightarrow Wh$ and $h \rightarrow \tau \tau$ are forced
- Events are filtered with cuts on light lepton p_T (20 GeV and 8 GeV)

 All NTuples used in this analysis are produced with TopCPToolkit v3 maintained by the Tau + X umbrella of the LPX Exotics Working Group at ATLAS.

A. Meppurath IMAPP Master Thesis 12/5

Monte Carlo Production with ATLAS Athena: Background

Sample Name	DSIDs	Sample Name	DSIDs
$t\overline{t}$	410470	tZ	410560
threeTop	304014	ttWW	410081
Z-jets	700322, 700324, 700325, 700335,	fourTop	412043
	700336, 700337	WtZ	410408
		ttWZ	500463
W-jets	700338, 700339, 700340, 700349,	ttHH	500460
	700341,, 700348 (12 total)	ttWH	500461
		$tt\gamma$	500800, 504554
VV	700589, 700591, 700592, 700593,	$V\gamma$	700398, 700399, 700400,
	700594, 700603, 700604, 700605		700401,, 700404 (7 total)
SingleTop	410659, 410644, 410645		
VH	346645, 346646	ttZZ	500462
ttZ	410276, 410277, 410278	tH	545796
ttW	700168		
ttH	346343, 346344, 346345		

A. Meppurath IMAPP Master Thesis 13/50

Analysis Chain

- FastFrames is used to define custom features in the dataset, make pre-selections and define object qualities (for e, μ, τ and jets)
- Scale-based approach :
 - Two separate (low-scale and high-scale) XGBoost models are trained on the Signal Region (SR)
 - Low-Scale: 250,350,400GeV; High-Scale: 500-3000GeV (11 datasets)
- Background contributions are mainly expected through fake leptons, hence
 - CRs are defined for fake leptons using reconstructed variables.
 - Simultaneous CR+SR fit (SR blinded) to recorded ATLAS data (Run 2) to obtain norm factors for fakes
- Expected limit on cross-section is obtained by performing a profile-likelihood fit for the background-only hypothesis on the signal probability distribution for each hypothesized mass point of H⁺

A. Meppurath IMAPP Master Thesis 14/50

Section Summary

- Statistical model for hypothesis testing is built with MC datasets of signal hypotheses and SM backgrounds
- A scale-based ML approach is employed for optimal S-B separation over the entire mass range.
- Data driven template fits are performed to correctly estimate fake contribution in the SR.
- Profile likelihood fit is performed on the signal probability variable, so that better separation ⇒ stronger limits

A. Meppurath IMAPP Master Thesis 15/50

ML Diagnostics

XGB Training Curves: Low-Scale

Figure 2: Training curves for XGB-low

A. Meppurath IMAPP Master Thesis 16/50

XGB Training Curves : High-Scale

Figure 3: Training curves for XGB-high

A. Meppurath IMAPP Master Thesis 17/50

Figure 4: ROC for XGB-low

A. Meppurath IMAPP Master Thesis 18/5

ROC: High-Scale

Figure 5: ROC for XGB-high

A. Meppurath IMAPP Master Thesis 19/50

Figure 6: Optimal F1-based thresholds for XGB-low and XGB-high

A. Meppurath IMAPP Master Thesis 20/50

Feature Importance Ranking

Figure 7: Feature importance ranking for XGB-low and XGB-high. Apart from the top two features, the ranking is quite distinct. Indicates scale-dependence of feature importance

A. Meppurath IMAPP Master Thesis 21/50

Model Hyperparameters

- · Both model hyperparameters were separately optimized with Optuna
- The hyperparameters are significantly different for both models, indicating mass-scale dependence of optimal model performance

Low-scale Model

n_{-} estimators	=	6000,
$learning_rate$	=	0.0109,
max_depth	=	10,
subsample	=	0.6656,
colsample_bytree	=	0.8735,
gamma	=	0.0070,
reg_lambda	=	0.0095,
alpha	=	0.2164

High-scale Model

```
n estimators
                 = 6000.
                 = 0.0157.
learning_rate
max_depth
                 = 8,
subsample
                 = 0.8577.
colsample_bytree
                 = 0.6873,
                 = 3.43e-05.
gamma
reg_lambda
                 = 3.95e-07.
alpha
                 = 0.0003
```

A. Meppurath IMAPP Master Thesis 22/50

Section Summary

- Both ML models are able to classify S/B quite well (high AUC values).
- Scale-based approach could be beneficial as the optimized model structure for both models are different.
- The F1-based optimal threshold could be used to obtain/remove region with high signal purity.

A. Meppurath IMAPP Master Thesis 23/50

Data-driven Fake Estimation

Fake Categories for $2I_{SS}1\tau$

Both the signal and background samples are **re-classified** into either **prompt** or **non-prompt** samples, which fall under one of the following categories :

- 1. **Fake** e: EXACTLY one fake electron. Norm : $\lambda(e_f)$
- 2. **Fake** μ : EXACTLY one fake muon. Norm : $\lambda(\mu_f)$
- 3. **Fake** $I + \tau$: EXACTLY one fake lepton and fake tau. Norm : $\lambda(multi fake)$
- 4. **Double Fake**: Both light leptons are fake. Norm : $\lambda(multi fake)$
- 5. **Fake** τ : EXACTLY one fake tauon. Norm : $\lambda(\tau_f)$
- 6. **Triple Fake**: All three leptons are fake. Norm : $\lambda(\tau_f)$

Each event can only be part of ONE of these categories

A. Meppurath IMAPP Master Thesis 24/50

Figure 8: Re-classification of samples into prompt and non-prompt categories. Total number of events remain the same

A. Meppurath IMAPP Master Thesis 25/50

Control Region : Fake τ and Triple-Fake

Figure 9: Pre-fit and Post-fit η_{τ} distribution in the CR for Fake τ and Triple Fake; Norm-Factor $\lambda(\tau_f)$

A. Meppurath IMAPP Master Thesis 26/50

Control Region : Fake $I+\tau$ and Double-Fake

Figure 10: Pre-fit and Post-fit $p_{T,\tau}$ distribution in the CR for Fake $I + \tau$ and Double Fake; Norm-Factor $\lambda(multi - fake)$

A. Meppurath IMAPP Master Thesis 27/5

Figure 11: Pre-fit and Post-fit lepton p_T distribution in the CR for Fake e; Norm-Factor $\lambda(e_f)$

A. Meppurath IMAPP Master Thesis 28/50

Figure 12: Pre-fit and Post-fit lepton p_T distribution in the CR for Fake μ ; Norm-Factor $\lambda(\mu_f)$

A. Meppurath IMAPP Master Thesis 29/50

Correlation and Estimated Norms

Figure 13: The correlation matrix between norm-factors and the estimated norm-factor after template fit (for $m_{H^+} = 400 \text{ GeV}$)

A. Meppurath IMAPP Master Thesis 30/50

Section Summary

- Possible fake contribution categories identified for $2I_{SS}1\tau$ final state
- Dedicated, orthogonal CRs created for 4 norm-factors
- Norm factors estimated after fit to recorded ATLAS data are stable and show minimal correlation with each other (except for $\lambda(\mu_f)$)

A. Meppurath IMAPP Master Thesis 31/50

Sensitivity Analysis

Estimated Upper Limit on Cross-section

Figure 14: Expected 95% CL upper limit on the cross-section for all mass hypotheses. The solid black line shows the median expected limit, with the green and yellow bands representing the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties. The red dotted line is the theoretical prediction for the signal.

A. Meppurath IMAPP Master Thesis 32/50

Figure 15: Comparison of expected upper limts on cross section between previous analysis in Rel. 21 [5] and this analysis (Rel. 22)

A. Meppurath IMAPP Master Thesis 33/

Figure 16: Comparison of observed upper limit on cross-section from CMS [6] and expected upper limit estimated in this analysis

A. Meppurath IMAPP Master Thesis 34/50

Conclusion and Outlook

Summary

- Full analysis chain conducted on 14 signal hypotheses of tbH^+ (2HDM type II; $\tan \beta = 20$) from MC production to expected upper limit on cross-section.
- 70+ custom feature definitions added to the dataset, mostly specific to $2l_{SS}1\tau$ final state
- Two optimized XGB models trained separately for S-B discrimination
- Data-driven norm-factors for fake leptons determined with dedicated CRs
- Expected upper limits on cross-section point towards the most sensitive exclusion of the charged Higgs till date

Internal Note: (ANA-HMBS-2024-42: H+ to Wh, h to tautau)

A. Meppurath IMAPP Master Thesis 35/50

Next Steps

- Include systematic uncertainties
- Unblind signal region
- Estimate observed upper limits
- · Aiming for publication

References

H. Haber and G. Kane, "The search for supersymmetry: Probing physics beyond the standard model," *Physics Reports*, vol. 117, no. 2, pp. 75–263, 1985.

A. Tranberg and B. Wu, "Cold Electroweak Baryogenesis in the Two Higgs-Doublet Model," *JHEP*, vol. 07, p. 087, 2012.

S. Iguro and Y. Omura, "The direct CP violation in a general two Higgs doublet model," *JHEP*, vol. 08, p. 098, 2019.

C. Degrande, R. Frederix, V. Hirschi, M. Ubiali, M. Wiesemann, and M. Zaro, "Accurate predictions for charged Higgs production: Closing the $m_{H^\pm}\sim m_t$ window," *Phys. Lett. B*, vol. 772, pp. 87–92, 2017.

M. Rames, "Search for tbh⁺($\tau\tau$) with performance optimisation for signal and background separation using machine learning with atlas data," Master's thesis, CTU, 2023.

CMS Collaboration, "Search for a charged higgs boson decaying into a heavy neutral higgs boson and a w boson in proton-proton collisions at \sqrt{s} = 13 tev," *Journal of High Energy Physics*, vol. 2023, no. 9.

A. Meppurath IMAPP Master Thesis 37/50

Thank you for your attention!

Backup Slides

Table 1: DSIDs and hypothesized H^+ mass points

DSID	H ⁺ Mass (GeV)	DSID	H ⁺ Mass (GeV)
512185	250	567613	900
512186	3000	567614	1000
512187	800	567615	1200
567608	350	567616	1400
567609	400	567617	1600
567610	500	567618	1800
567611	600	567619	2000

A. Meppurath IMAPP Master Thesis 39/50

Object Definition & Event Selection

WP: wpSet0

Electron: el_select_TightLH_Loose_VarRad_NOSYS && el_AmbiguityType == 0 && abs(el_eta) <= 2.5

Muon: mu_select_Medium_NonIso_NOSYS && mu_select_Loose_Tight_VarRad_NOSYS && abs(mu_eta) <= 2.5

Tau:

Jet: $abs(jet_eta) < 2.5$

FastFrames: Exactly 2 Leptons, 1 Tau, At least 1 Jet, Leading Lepton $p_T > 25$ GeV,

Sub-leading Lepton $p_T > 10 \text{GeV}$

TRExFitter: Same-Sign Condition on Leptons, At least 1 b-jet (nbJets77 > 0), At least 4

jets – $2I_{SS}1\tau 4j1b$

A. Meppurath IMAPP Master Thesis 40/50

TabNet ROC: High-Scale

Confusion Matrices

A. Meppurath IMAPP Master Thesis 43/50

Probability Distribution: TabNet v XGB

Optuna Optimization: XGB-low and XGB-high

A. Meppurath IMAPP Master Thesis 47/50

N Features Usage

Fake Categories

Fake Category	Selection Logic
Fake e	(((lep_flav_0_NOSYS == 0 && XXX_OnlyLeadFake) (lep_flav_1_NOSYS == 0 && XXX_OnlySubLFake))) && HadTau_truth_NOSYS
Fake μ	(((lep_flav_0_NOSYS == 1 && XXX_OnlyLeadFake) (lep_flav_1_NOSYS == 1 && XXX_OnlySubLFake))) && HadTau_truth_NOSYS
Double Fake	!XXX_Prompt_0 && !XXX_Prompt_1 && HadTau_truth_NOSYS
Fake $I + \tau$	(XXX_OnlyLeadFake XXX_OnlySubLFake) & !HadTau_truth_NOSYS
Fake $ au$	(!HadTau.truth_NOSYS && XXX_BothPrompt)
Triple Fake	!XXX.Prompt_0 && !XXX.Prompt_1 && !HadTau_truth_NOSYS

Table 2: Boolean flags used to define different categories of fake leptons and taus

A. Meppurath IMAPP Master Thesis 49/50

ATLAS IFFtool Usage

Flag Name	Boolean Logic Definition
XXX_Prompt_O	<pre>(leps_IFFtype_0_NOSYS == 2 leps_IFFtype_0_NOSYS == 4 leps_IFFtype_0_NOSYS == 7)</pre>
XXX_Prompt_1	<pre>(leps_IFFtype_1_NOSYS == 2 leps_IFFtype_1_NOSYS == 4 leps_IFFtype_1_NOSYS == 7)</pre>
${\tt XXX_BothPrompt}$	(XXX_Prompt_O && XXX_Prompt_1)
${\tt XXX_OnlyLeadFake}$	(!XXX_Prompt_0 && XXX_Prompt_1)
XXX_OnlySubLFake	(!XXX_Prompt_1 && XXX_Prompt_0)

Table 3: Prompt recognition using IFFtool-based variables¹

A. Meppurath IMAPP Master Thesis 50/50

¹TruthClassification repo