Exploring the potential of quantum observables to search for new physics, in boosted top-pair production

Josue Elizalde
Supervised by:
Dr. Federica Fabbri
Dr. Andrea Helen Knue

September 29, 2025

Motivation

- → The top quark:
 - Largest mass among Standard Model (SM) particles
 - Strongest coupling to the Higgs boson
 - Top decays before hadronization and before spin-decorrelation
- → The Standard Model (SM) is incomplete:
 - Dark Matter
 - Baryon asymmetry
 - Gravity outside the framework
- → SM is valid up to ~ 13.6 TeV

Goal

- → GOAL: Use quantum information principles to study new physics effects in top-pair production
- → FOCUS: **Semileptonic** channel

Spin in top quark

- Spin is an intrinsic form of angular momentum carried by elementary particles
- Spin ½ Fermion
- Top quark spin can be represented as a qubit with a 2×2 density matrix ρ

$$\rho = \frac{1}{2} \left(\mathbb{1} + \sum_{i=1}^{3} B_i \sigma_i \right)$$

Spin in tt system

The density matrix of a top-antitop pair system is given by

$$\rho = \frac{1}{4} (\mathbb{1} \otimes \mathbb{1} + \sum_{i=1}^{3} B_{i} \sigma_{i} \otimes \mathbb{1} + \sum_{j=1}^{3} \bar{B}_{j} \mathbb{1} \otimes \sigma_{j} + \sum_{i=1}^{3} \sum_{j=1}^{3} C_{ij} \sigma_{i} \otimes \sigma_{j})$$
Polarization of top
Polarization of anti-top
Polarization of anti-top

- C_{ij} : encodes how the spins of the top and anti-top are correlated along different axes.
 - > **Entanglement**: these correlations cannot be explained by treating top and anti—top as having independent states.

Spin Correlation Matrix Reconstruction

- Weak interactions are chiral
 - > Top quark **spin reconstruction** is possible with the **angles** of its decay products
 - Variables defined before hadronization
 - Lepton and down-type quark as spin analyzers

Spin Correlation and Entanglement in tt

Spin Correlations:

- Present in all phase space
- Expected to be strong in threshold and high momentum ttbar events

 $m_{t\bar{t}}$ [GeV] From When the Machine Chimes the Bell (Z. Dong, D. Gonçalves, K. Kong, A. Navarro).

Entanglement:

- > Expected in central region.
- ightharpoonup Verified by criteria involving observable D_3 .

$$D_3 = -\frac{1}{3}(C_{kk} + C_{rr} - C_{nn})$$

Criteria for entanglement

$$D_3 > \frac{1}{3} \implies \text{ entangled state.}$$

SM as an Effective Field Theory (SMEFT)

- Powerful tool to search for new physics beyond the LHC energy scale
- Modifies couplings
- New physics may appear as small deviations in known observables

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d \ge 5} \sum_{k} \frac{c_k^{(d)}}{\Lambda^{d-4}} O_k^{(d)}$$

- \mathcal{L}_{SM} : SM Lagrangian.
- Λ: new physics scale (cutoff).
- $O_k^{(d)}$: operators of dimension d > 4.
- $c_k^{(d)}$: Wilson coefficient.

Dimension-6 SMEFT Operators

The list of relevant operators is

The effects of dimension-six operators on spin correlations can be parametrized as follows

$$\sigma(c_i) = \sigma_{\text{SM}} + \frac{1}{\Lambda^2} \sigma_{\text{SM} \times \text{EFT}} + \frac{1}{\Lambda^4} \sigma_{\text{EFT}}$$

Reconstruction of Observables

- Reconstruction of normalized angular distributions
- Angular distributions to extract different observables
 - Spin Correlations: C_{kk}, C_{rr}, C_{nn}
 - Entanglement Marker: D₃
 - Number of events: $N_{\rm EFT} \propto \sum w_{\rm EFT}$
- Different regions have different sensitivity

Region	Cut Applied		
Threshold	$m_{tar{t}} <$ 400 GeV		
Boosted	$m_{tar{t}} > 800 { m GeV}$		
Central Boosted	$m_{t\bar{t}} > 800$ GeV, $ \cos \theta < 0.4$		
Central Highly-Boosted	$m_{t\bar{t}} > 1500 \text{ GeV}, \cos\theta < 0.2$		

Effect of dim-6 Operators

❖ SMEFT effects introduced via event weights

Parametrization of SMEFT effects

EFT predictions for observables are modeled as polynomial functions of Wilson Coefficients (WCs)

$$O_{EFT}(c) = \alpha_0 + \alpha_1 c + \alpha_2 c^2$$

Threshold region

Boosted region

Parametrization of SMEFT effects on 2 WCs

Case of two operators effects simultaneously

$$O_{EFT}(c_1, c_2) = \alpha_1 + \alpha_2 c_1 + \alpha_3 c_2 + \alpha_4 c_1^2 + \alpha_5 c_2^2 + \alpha_6 c_1 c_2$$

Deriving Limits on Wilson Coefficients

- Method: Bayesian inference using EFTfitter* tool
- **Parameters**: Pairs of WCs
- Observables: Polynomial deppendance previously obtained
- Case 1: Toy Study for Ranking of Observables
 - > Measurements:
 - SM predictions
 - 10% sys. uncertainty assumed
 - No correlations between observables assumed.

- Case 2: Using CMS data (TOP-23-007)
 - Measurements:
 - C_{kk}, C_{rr}, C_{nn} measurements
 - Covariance matrices from
 CMS (TOP-23-007) included :
 Statistical + Sys. uncertainties

*N. Castro et al., *Eur. Phys. J. C* 76, 432 (2016). doi:10.1140/epjc/s10052-016-4273-4

Limits Obtained in Case 1

- Posterior distribution for a pair of WCs in the central boosted region
- Posterior distribution with 68%, 95% and 99% credible intervals.

Only Nevents

Including Quantum Observables

Ranking Result

- Ranking of results evaluates the importance of each observable
- A larger increase means the observable provides stronger constraints

Ranking of measurements sum of rel. increases of smallest 90.0% intervals 0.2 N events D3 Ckk Crr Ckr Cnn A plus

(a) Boosted region

(b) Central high-boosted region

Summary: Spin observables are the main drivers of sensitivity overall, while Number of events gains importance only in the central high-boosted regime.

Validation using CMS data

- \diamond Validation of the simulation is performed by comparison of C_{kk} , C_{rr} , C_{nn}
- CMS data comparison at different $m_{t\bar{t}}$ regions and with and without $|\cos(\theta)| < 0.4$
- Good agreement is found in both cases.

Analysis Results using CMS data: Posteriors

Posterior distribution with 68%, 95% and 99% credible intervals.

Credible Intervals extracted

Results are shown with (blue) and without (red) the angular cut | $\cos \theta$ | < 0.4 in the boosted region

Summary Results

- Posterior distributions are consistent with the SM (0) and set EFT limits from spin-correlation data.
- Central boosted region provides the strongest sensitivity:
 - \succ C_{rr} dominates for many operator pairs.
 - \succ C_{nn} leads in other cases, while Nevents matter in highly boosted scenarios.
- **Strongest bounds for WCs:** C_{tGRe} and C_{Qj31} (~ ±0.3).
- \diamond Weakest bounds for WCs: C_{Qd8} , C_{td8} , C_{tj8} , especially C_{tu8} (> 2).
- Angular cut | $\cos \theta$ | < 0.4 improves constraints (up to ~ 30% for C_{Qi31} , C_{Qu8}).

Conclusion

- Quantum observables in tt-bar production were studied as probes of new physics.
- Spin density matrix coefficients and entanglement marker are reconstructed from tt⁻ final states in the semileptonic channel.
- SMEFT analysis with dimension—six operators:
 - Identified operator effects on spin and entanglement observables.
 - > EFT transform observables into WC bounds.
- Test using SM values as pseudo-data
 - Central boosted regime most sensitive regime
- Use CMS data to derive real limits WCs for dim-6 operators

Thank you for your attention

Limits Obtained in Case 1

Posterior distributions for Qj31 WCs in the central boosted region

Only Nevents

Including Quantum Observables