Event Reconstruction of the Hyper-Kamiokande Detector

Ben Carew - IMAPP - 29/09/25

Supervisors: Dr Vladimir Gligorov and Dr Mathieu Guigue

Hyper-Kamiokande

SuperK, the predecessor of HyperK

- Next-generation **neutrino** detector
- Water Cherenkov collects radiation from super-luminal particles
- 20,000 photomultiplier tubes with **charge** and **time** data
- Need to **reconstruct** physical events from the PMT data

Hyper-Kamiokande

Motivation

- Charge-Parity Violation explains matter-antimatter asymmetry in the universe
- HyperK will have worldleading sensitivity to CPV in neutrinos
- Fast reconstruction directly reduces systematic errors for this analysis

Motivation

- Event reconstruction needs to be **efficient** and **robust**
 - Unexpected deviations from simulated data and backgrounds
 - Malfunctions and unpredictable detector behaviour
- Faster reconstruction o larger MC sample o greater discovery potential
 - Focus on CPV analysis, but will benefit HyperK's broad physics goals
- Crucial to optimise reconstruction before calibration in **July 2027**

Scattered Light Table

$$A(s) = A(oldsymbol{x_{ ext{PMT}}}, oldsymbol{z_{ ext{vtx}}}, oldsymbol{R_{ ext{vtx}}}, oldsymbol{arphi}, oldsymbol{ heta}, oldsymbol{\phi}) = rac{ ext{d}\mu^{ ext{sct}}}{ ext{d}\mu^{ ext{iso,sct}}}$$

- Accounts for predicted charge from light scattered in water and reflected
- Table requires computationally taxing 6D interpolation at each point s along the track ~35% of total runtime
- Optimisable by studying the physics behind the table's structure

Scattered Light Table

Gradient Threshold Optimisation

- Calculate 6D gradient between each table value
- Apply a threshold:
 - Above -> interpolate
 - Below -> nearest neighbour
- Find highest threshold value before error becomes large

Gradient Threshold Optimisation

Gradient Threshold Results

Gradient Threshold Results

Parametrisation Optimisation

- Regions of the scattering table can be well-fit by analytical functions
- Use physically-motivated relationships between dimensions to reduce interpolation complexity

Parametrisation Results

Selective Interpolation Optimisation

- Determine which dimensions must be interpolated for each bin
- Select most efficient interpolation strategy for a given point
- Generate bespoke interpolation function at runtime

Momentum Reconstruction

Final Results

Method	Runtime (s)	Time Ratio	p Mean (MeV)	p Variance
Nearest Neighbour	21.5	0.70	466.4	23.58
Selective Interpolation 25%	27.3	0.89	482.2	16.16
Selective Interpolation 5%	29.9	0.97	487.4	15.92
Full 6D Interpolation	30.7	1.00	491.3	14.39

10% speed-up with 2% additional error

Next Steps

Recently completed HyperK cavern

- Optimise reconstruction with machine learning before calibration phase
- Construction shifts, installation and qualification of timing system
- Generate simulation samples and procedure for data validation
- Phenomenological studies preparing for CPV data analysis

Summary

- Developed three optimisation methods for the scattering table interpolation
- Selective interpolation provides good efficiency-accuracy trade-off
- Machine learning techniques may produce greater efficiency improvements
- Even 10% faster reconstruction = 10% more calibration data = improved systematics for HyperK