

Data-driven background estimation in the search for Higgs boson pair production in the HH \rightarrow bbbb channel with the ATLAS experiment

Master's Thesis Defense

Emilio Apicella

First reviewer: R.C. Camacho Toro

Second reviewer: M. Franchini

VBF boosted HH → 4b

Studying this channel helps to **test the electroweak symmetry breaking mechanism in the Standard Model** of particle physics and explore possible **new physics**.

These events are hidden inside a large amount of QCD background composed of:

- Non-resonant multijet production with heavy quarks (b/c);
- $t\bar{t}$ events (approx. 10% of multijet bkg);
- light jets misidentified as b-jets;

Current Background Estimation in $HH o bar{b}bar{b}$

arXiv:2404.17193v2 [hep-ex]

- Define a Control Region (CR): a region where the signal contamination is low (max 8%).
- Event Selection:
 - 1Pass: only one boosted jet is identified as a b-jet.
 - 2Pass: both boosted jets are identified as b-jets.
- In the CR, compute a **normalization factor**:

$$w = \frac{N_{\text{CR, 2Pass}}}{N_{\text{CR, 1Pass}}} = 0.0039 \pm 0.0002$$

 Apply this weight w to 1Pass events in the Signal Region (SR) to estimate the background in 2Pass SR.

Systematics: estimated from the difference of *w* in Validation Region (VR).

Problems: poor statistics in CR, high uncertainties

Solution

- Approach: Data-driven combined with Machine Learning techniques.
- **Data used:** Run 2 (2015–2018) + partial Run 3 (2022–2023).
- Selection:
 - VBF selection:
 - p_T of the two VBF jets > 20 GeV;
 - Invariant mass of the di-jet system: $m_{ij} > 1$ TeV;
 - $|\eta^{\text{vbfj1}} \eta^{\text{vbfj2}}| > 3;$
 - Boosted topology selection:
 - p_T of the leading Higgs candidate > 450 GeV;
 - p_T of the subleading Higgs candidate > 250 GeV.

Analysis Regions Definitions

$$\begin{split} & \text{SR:} \\ & \sqrt{\left(\frac{m_{H_1}-124~\text{GeV}}{1500~\text{GeV}/m_{H_1}}\right)^2 + \left(\frac{m_{H_2}-117~\text{GeV}}{1900~\text{GeV}/m_{H_2}}\right)^2} < 1.6~\text{GeV} \end{split}$$

VR and CR:

$$\sqrt{\left(\frac{10(m_{H_1}-124~\text{GeV})}{\log m_{H_1}}\right)^2 + \left(\frac{10(m_{H_2}-117~\text{GeV})}{\log m_{H_2}}\right)^2} < 170~\text{GeV}$$
 &

$$(m_{H_1} > 124 \text{ GeV} \land m_{H_2} > 117 \text{ GeV})$$
 or $(m_{H_1} < 124 \text{ GeV} \land m_{H_2} < 117 \text{ GeV})$

Tagging Strategies

Tag

Both large-R jets are bb-tagged

Pros:

Kinematics of interest

Cons:

- Poor statistics
- \rightarrow We will use the "No Tag" dataset and then we will apply a "reweighting".

No Tag

Neither of the two large-R jets is bb-tagged

Pros:

Very high statistics (~ 20000x events)

Cons:

Opposit kinematics

Overview of the Analysis Strategy

Fit 2D mass distribution $f(m_{h1}, m_{h2})$

Models tested: Gaussian Process, Polynomial

Compute Tag reweighting factor

 $w(x) = \frac{f(x|\text{Tag}=1)}{f(x|\text{Tag}=0)}$

XGBoosting

Train conditional Neural Network Flow

 $f(x \mid m_{h1}, m_{h2}, \text{year})$

Uncertainty estimation
Background estimation
in Signal Region

Data from different years show distinct distributions \rightarrow treat them separately to ensure more accurate modeling.

Polynomial

Gaussian Process

Fit Results NoTag - VR

Compared to polynomial fits, the Gaussian Process regressor offers a more flexible and accurate description of the 2D mass distribution.

Features:

- Leading Higgs Candidate (H1): p_T^{h1} , ϕ^{h1} , η^{h1} .
- Subleading Higgs Candidate (H2): p_T^{h2} , ϕ^{h2} , η^{h2} .
- Leading VBF Jet: E^{vbfj1}, p_T^{vbfj1}, η^{vbfj1}
- Subleading VBF Jet: E^{vbfj₂}, p^{vbfj₂}, η^{vbfj₂}
- Di-Jet system: m_{jj}

Conditions: m^{h1} , m^{h2} , year

flow=NSF(transforms=48,hidden_features=[256,256,256],bins=128)

arXiv:1906.04032

$$egin{aligned} \mathsf{m}_{hh} &= \sqrt{2\,p_T^{h_1}\,p_T^{h_2}\,(\cosh(\eta^{h_1}-\eta^{h_2})-\cos(\phi^{h_1}-\phi^{h_2}))} \ \mathsf{p}_T^{hh} &= \sqrt{(p_T^{h_1})^2+(p_T^{h_2})^2+2\,p_T^{h_1}\,p_T^{h_2}\cos(\phi^{h_1}-\phi^{h_2})} \end{aligned}$$

Learning Correlation

Even though the *primitive* variables are well modeled by the NN, derived/calculated observables are not consistent with data indicating a missing effect or assumption we did not account for.

Learning Correlation

•
$$\phi^{h1}, \phi^{h2} \rightarrow \phi^{h1}, \Delta \phi$$

• $\eta^{h1}, \eta^{h2} \rightarrow \eta^{h1}, \Delta \eta$

where
$$\Delta \phi = (\phi^{h1} - \phi^{h2})$$
, $\phi^{h2} = \phi^{h1} - \Delta \phi$
where $\Delta \eta = (\eta^{h1} - \eta^{h2})$, $\eta^{h2} = \eta^{h1} - \Delta \eta$

Now the correlation among all the variables is learned by the Neural Network.

Optimal modeling in the VR obtained for the datasets with no boosted-Tag requirements; now we need to apply reweighting.

XGBoosting [https://xgboosting.com]

Inputs:

- Leading Higgs Candidate (H1): m^{h1} , p_T^{h1} , ϕ^{h1} , η^{h1} .
- Subleading Higgs Candidate (H2): m^{h2} , p_T^{h2} , ϕ^{h2} , η^{h2} .
- Leading VBF Jet: E^{vbfj1}, p_T^{vbfj1}, η^{vbfj1}
- Subleading VBF Jet: E^{vbfj₂}, p^{vbfj₂}, η^{vbfj₂}
- Di-Jet system: m_{jj}

Outputs:

- probability_tag_h1 = $\mathbb{P}(T = 1 \mid x)_{H1}$
- probability_tag_h2 = $\mathbb{P}(T = 1 \mid X)_{H2}$

Correction:

$$w=\frac{p}{1-p}$$

H1 and H2 correction work well, $prob_{h1}$ and $prob_{h2}$ are independent \rightarrow

weight_{h1h2} =
$$\frac{prob_{h1} \cdot prob_{h2}}{1 - prob_{h1} \cdot prob_{h2}}$$

Apart from the poor statistics, the modeling is very good.

- Intrinsic statistics: distributions learned by the model.
- Neural Network training uncertainty: If we train the NN again, we would obtain different minimum → different parameters.
- Deviation from no-tagged data.
- BDT correction UNC: deviations from data in tagged events.

- Intrinsic statistics: distributions learned by the model.
- Neural Network training uncertainty: If we train the NN again, we would obtain different minimum → different parameters.
- Deviation from no-tagged data.
- BDT correction UNC: deviations from data in tagged events.

- Intrinsic statistics: distributions learned by the model.
- Neural Network training uncertainty: If we train the NN again, we would obtain different minimum → different parameters.
- Deviation from no-tagged data.
- BDT correction UNC: deviations from data in tagged events.

- Intrinsic statistics: distributions learned by the model.
- Neural Network training uncertainty: If we train the NN again, we would obtain different minimum → different parameters.
- Deviation from no-tagged data.
- BDT correction UNC: deviations from data in tagged events.

- Intrinsic statistics: distributions learned by the model.
- Neural Network training uncertainty: If we train the NN again, we would obtain different minimum → different parameters.
- Deviation from no-tagged data.
- BDT correction UNC: deviations from data in tagged events.

Different sources:

- Intrinsic statistics: distributions learned by the model.
- \circ Neural Network training uncertainty: If we train the NN again, we would obtain different minimum \to different parameters.
- Deviation from no-tagged data.
- BDT correction UNC: deviations from data in tagged events.

Comparison with old model

- The new model reproduces the distributions in agreement with the old method.
- It allows us to generate arbitrary statistics.
- ightarrow This improves the precision of the background estimate: up to $\sim 90\%$ reduction of the uncertainties.
- It can be used to train ML classifiers for signal/background discrimination.

generated_background.root

Ready to be shared for background analyses

THANK YOU!

Backup

E. Apicella Master's Thesis Defense Backup 29/09/2025 21

Boosted vs Resolved

$E < E_{\rm LHC} \qquad E > E_{\rm LMC} \qquad E > E_{\rm CMC}$

Resolved topology:

- Higgs bosons decay into 4 well-separated b-jets.
- Simpler reconstruction (small-R jets).
- Large QCD background makes signal extraction harder.

Boosted topology:

- Each Higgs is highly energetic ($p_T \gg m_H$).
- The two b-quarks merge into a single large-R jet.
- Better background rejection and mass resolution.

Note: *b*-tagging in boosted jets relies on advanced deep learning models, including the transformer-based **GN2X** architecture.

CR/VR yields

Region	noTag	Tag	noTag/Tag
CR	5166178	278	18583.4
VR	4657884	262	17778.2

E. Apicella Master's Thesis Defense Backup 29/09/2025 24

Gaussian Process Regressor (GPR)

In a GPR, the function values follow a Gaussian distribution:

$$\mathbf{f} \sim \mathcal{N}(m(\mathbf{x}), K(\mathbf{x}, \mathbf{x}')),$$

where $m(\mathbf{x})$ is the mean function and K is the **kernel** encoding correlations.

Kernels used in this work:

Constant: scales the overall variance.

$$k(\mathbf{x}, \mathbf{x}') = \sigma_c^2$$

RBF (Radial Basis Function): smooth variations, different ℓ capture multiple scales.

$$k(\mathbf{x}, \mathbf{x}') = \sigma_t^2 \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\ell^2}\right)$$

Dot Product: adds a global linear trend.

$$k(\mathbf{x}, \mathbf{x}') = \sigma_0^2 + \mathbf{x} \cdot \mathbf{x}'$$

White Noise: models uncorrelated statistical noise.

$$k(\mathbf{x}, \mathbf{x}') = \sigma_n^2 \, \delta_{\mathbf{x}, \mathbf{x}'}$$

Computing Correction

$$\mathbb{P}(T=1\mid x) = \frac{\mathbb{P}(x\mid T=1)\cdot \mathbb{P}(T=1)}{\mathbb{P}(x)} \qquad \mathbb{P}(T=0\mid x) = \frac{\mathbb{P}(x\mid T=0)\cdot \mathbb{P}(T=0)}{\mathbb{P}(x)}$$

$$\frac{\mathbb{P}(T=1\mid x)}{\mathbb{P}(T=0\mid x)} = \frac{\mathbb{P}(x\mid T=1)\cdot \mathbb{P}(T=1)}{\mathbb{P}(x\mid T=0)\cdot \mathbb{P}(T=0)}$$

$$\mathbb{P}(T=1\mid x) = p(x) \qquad \mathbb{P}(T=0\mid x) = 1 - p(x)$$

$$\Rightarrow \qquad w = \frac{p(x)}{1-p(x)}$$

H1 and H2 correction work well, $prob_{h1}$ and $prob_{h2}$ are independent \rightarrow

$$\mathsf{weight}_{h1h2} = \frac{\mathit{prob}_{h1} \cdot \mathit{prob}_{h2}}{1 - \mathit{prob}_{h1} \cdot \mathit{prob}_{h2}}$$

Intrinsic statistics of the model

- 1. Generate 100 mass samples.
- 2. Apply the NN to each of them.
- —> End up with 100 different distributions: compute **mean** and **standard deviation**.
- 1. Apply the NN 100 times on the same mass sample.
- —> End up with 100 different distributions: compute **mean** and **standard deviation**.

Sum under $\sqrt{}$ the two standard deviations.

Model Spread

- Train the model as many times as we can. (4 for now)
- End up with different models and so different predictions
- -> Compute **means** and **standard deviation**

```
Epoch 35,716089, Train Loss: -13,3946, Val Loss: -13,1734
Epoch Ilse: 694.58s, Total Time: 189979.06s, LR: 1.48e-07
CUNNTER: 19
Epoch 35,716080, Train Loss: -13,393, Val Loss: -13,173
Epoch Time: 683.88s, Total Time: 186663,74s, LR: 1.48e-07
COUNTER: 19
Epoch 353,716080, Train Loss: -13,3934, Val Loss: -13,1697
Epoch Time: 683.88; Total Time: 187366,75s, LR: 1.48e-07
COUNTER: 19
Epoch 353,716080, Train Loss: -13,3952, Val Loss: -13,1693
Epoch 354,76800, Train Loss: -33,3952, Val Loss: -13,1693
COUNTER: 20
Early Stopping at epoch 354
Training completed. Total Time: 188836,775
Best Validation loss: -13,18148886,775
```


Deviation from data

Look at the relative (per bin) deviation between prediction and data.

BDT Uncertainty

Add uncertainty due to Tagging (BDT) correction:

- 1. Apply re-weighting separately on H1 and H2
- 2. Compare with data -> σ_{H_1} , σ_{H_2}

3.
$$\sigma_{BDT} = \sqrt{\sigma_{H_1}^2 + \sigma_{H_2}^2}$$

Comparison with old model

Estimation of the number of events with the old model:

The background estimate in 2Pass SR is obtained automatically via:

$$N_{\rm SR}^{\rm old} = w \cdot N_{\rm SR, 1Pass}$$

Estimation of the number of events with the new model:

- 1. Generate events in all regions using a 2D Gaussian Process regressor;
- 2. Evaluate the ratio

$$f = \frac{SR \text{ events}}{CR \text{ events}}$$

for 2Pass with the specified cuts;

- 3. Determine the number of events in the control region from real data, N_{CR}^{data} ;
- 4. Compute the estimated number of events in the signal region as

$$N_{\rm SR}^{\rm gen} = f \cdot N_{\rm CR}^{\rm data}$$
.

Flexible Transformations for Normalizing Flows

• **Normalizing Flow**: invertible map from noise $z \sim p_z$ to data x:

$$p(x) = p_z(f^{-1}(x)) \left| \det \frac{\partial f^{-1}}{\partial x} \right|$$

- Standard flows use affine transformations limited flexibility.
- Neural Spline Flows (NSF):
 - Replace affine maps with monotonic rational-quadratic splines.
 - Preserve analytic invertibility + tractable Jacobian.
- Applications: density estimation, VAEs, image generation.

E. Apicella Master's Thesis Defense Backup 29/09/2025 33