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VBF boosted HH → 4b

Studying this channel helps to test the electroweak symmetry breaking
mechanism in the Standard Model of particle physics and explore possible new
physics.

Channel Probability (%)

HH → bb̄bb̄ ∼ 34

HH → bb̄τ+τ− ∼ 7.3

HH → bb̄W+W− ∼ 12.5

HH → bb̄γγ ∼ 0.13

HH → W+W−W+W− ∼ 4.6

HH → γγγγ ∼ 0.0005

These events are hidden inside a large amount of QCD background composed of:
• Non-resonant multijet production with heavy quarks (b/c);
• t t̄ events (approx. 10% of multijet bkg);
• light jets misidentified as b-jets;
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Current Background Estimation in HH → bb̄bb̄

arXiv:2404.17193v2 [hep-ex]

• Define a Control Region (CR): a region where the signal contamination is
low (max 8%).

• Event Selection:
◦ 1Pass: only one boosted jet is identified as a b-jet.
◦ 2Pass: both boosted jets are identified as b-jets.

• In the CR, compute a normalization factor:

w =
NCR, 2Pass

NCR, 1Pass
= 0.0039 ± 0.0002

• Apply this weight w to 1Pass events in the Signal Region (SR) to estimate the
background in 2Pass SR.

Systematics: estimated from the difference of w in Validation Region (VR).

Problems: poor statistics in CR, high uncertainties
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Solution

• Approach: Data-driven combined with Machine Learning techniques.

• Data used: Run 2 (2015–2018) + partial Run 3 (2022–2023).

• Selection:
◦ VBF selection:

• pT of the two VBF jets > 20 GeV;
• Invariant mass of the di-jet system: mjj > 1 TeV;
•

∣∣ηvbfj1 − ηvbfj2
∣∣ > 3;

◦ Boosted topology selection:
• pT of the leading Higgs candidate > 450 GeV;
• pT of the subleading Higgs candidate > 250 GeV.
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Analysis Regions Definitions
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Tagging Strategies

Tag
Both large-R jets are bb-tagged

Pros:

• Kinematics of interest

Cons:

• Poor statistics

No Tag
Neither of the two large-R jets is bb-tagged

Pros:

• Very high statistics (∼ 20000x events)

Cons:

• Opposit kinematics

→ We will use the "No Tag" dataset and then we will apply a "reweighting".
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Overview of the Analysis Strategy

Fit 2D mass distribution
f (mh1, mh2)

Models tested: Gaussian
Process, Polynomial

Train conditional Neural
Network Flow

f (x | mh1, mh2, year)
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Mass Distributions NoTag - CR+VR+SR
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Data from different years show distinct distributions → treat them separately to
ensure more accurate modeling.
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Fit Strategies NoTag – 1 \ (VR ∪ SR)

Data
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Fit Results NoTag - VR
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Compared to polynomial fits, the Gaussian Process regressor offers a more flexible
and accurate description of the 2D mass distribution.
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Neural Network Model NoTag - CR

Features:
• Leading Higgs Candidate (H1): ph1

T , ϕh1, ηh1.
• Subleading Higgs Candidate (H2): ph2

T , ϕh2, ηh2.

• Leading VBF Jet: Evbfj1 , pvbfj1
T , ηvbfj1

• Subleading VBF Jet: Evbfj2 , pvbfj2
T , ηvbfj2

• Di-Jet system: mjj

Conditions: mh1, mh2, year

flow=NSF(transforms=48,hidden_features=[256,256,256],bins=128)
arXiv:1906.04032

mhh =
√

2 ph1
T ph2

T (cosh(ηh1 − ηh2)− cos(ϕh1 − ϕh2))

phh
T =

√
(ph1

T )2 + (ph2
T )2 + 2 ph1

T ph2
T cos(ϕh1 − ϕh2)
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Learning Correlation NoTag - VR

Even though the primitive variables are well modeled by the NN, derived/calculated
observables are not consistent with data indicating a missing effect or assumption
we did not account for.
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Learning Correlation NoTag - VR

Correlation between ϕh1 and ϕh2

The Neural Network doesn’t learn
the correlation among some
variables.
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Learning Correlation NoTag – VR

• ϕh1, ϕh2 → ϕh1,∆ϕ where ∆ϕ = (ϕh1 − ϕh2), ϕh2 = ϕh1 −∆ϕ

• ηh1, ηh2 → ηh1,∆η where ∆η = (ηh1 − ηh2), ηh2 = ηh1 −∆η

ϕh1 vs. ϕh2 ph1
T vs. ph2

T ηh1 vs. ηh2

Now the correlation among all the variables is learned by the Neural Network.
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Discriminant Variables Modeling Results NoTag – VR

HH candidate mass [GeV]

0

200

400

600

800

1000

1200

1400

310×

N
um

be
r 

of
 e

ve
nt

s

/ndf = 2.5862χ

p-value = 0.00002

NN Flow
Data

1000 1500 2000 2500 3000

HH candidate mass [GeV]

0.6
0.8

1
1.2
1.4

D
at

a 
/ P

re
d.  [GeV]

T
HH candidate p

410

510

610

710

810

N
um

be
r 

of
 e

ve
nt

s

/ndf = 2.2922χ

p-value = 0.00024

NN Flow
Data

0 100 200 300 400 500 600 700 800 900 1000

 [GeV]
T

HH candidate p

0.6
0.8

1
1.2
1.4

D
at

a 
/ P

re
d.

Optimal modeling in the VR obtained for the datasets with no boosted-Tag
requirements; now we need to apply reweighting.
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BDT Tagging Correction CR

XGBoosting [https://xgboosting.com]

Inputs:
• Leading Higgs Candidate (H1): mh1, ph1

T , ϕh1, ηh1.
• Subleading Higgs Candidate (H2): mh2, ph2

T , ϕh2, ηh2.

• Leading VBF Jet: Evbfj1 , pvbfj1
T , ηvbfj1

• Subleading VBF Jet: Evbfj2 , pvbfj2
T , ηvbfj2

• Di-Jet system: mjj

Outputs:
• probability_tag_h1 = P(T = 1 | x)H1

• probability_tag_h2 = P(T = 1 | x)H2

Correction:

w =
p

1 − p
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Independent H1 and H2 Correction CR
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H1 and H2 correction work well, probh1 and probh2 are independent →

weighth1h2 =
probh1 · probh2

1 − probh1 · probh2
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NN Flow Tagging Correction Tag - VR

Apart from the poor statistics, the modeling is very good.
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Uncertainty estimation

• Intrinsic statistics: distributions learned by the model.
• Neural Network training uncertainty: If we train the NN again, we would obtain

different minimum → different parameters.
• Deviation from no-tagged data.
• BDT correction UNC: deviations from data in tagged events.
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Uncertainty estimation
• Different sources:

◦ Intrinsic statistics: distributions learned by the model.
◦ Neural Network training uncertainty: If we train the NN again, we would obtain

different minimum → different parameters.
◦ Deviation from no-tagged data.
◦ BDT correction UNC: deviations from data in tagged events.
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Comparison with old model

HH candidate mass [GeV]
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• The new model reproduces the
distributions in agreement with the old
method.

• It allows us to generate arbitrary
statistics.

→ This improves the precision of the
background estimate: up to ∼ 90%
reduction of the uncertainties.

→ It can be used to train ML classifiers for
signal/background discrimination.

generated_background.root

Ready to be shared for background analyses
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THANK YOU !
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Backup
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VBF Production arXiv:2404.17193v2 [hep-ex]

gSM
hVV =

2m2
V

v gSM
hhVV =

2m2
V

v2 λSM
hhh =

3m2
h

v

(with V = W ,Z , v ≃ 246 GeV)
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Boosted vs Resolved

Resolved topology:

• Higgs bosons decay into 4 well-separated
b-jets.

• Simpler reconstruction (small-R jets).

• Large QCD background makes signal
extraction harder.

Boosted topology:

• Each Higgs is highly energetic (pT ≫ mH ).

• The two b-quarks merge into a single large-R
jet.

• Better background rejection and mass
resolution.

Note: b-tagging in boosted jets relies on advanced
deep learning models, including the

transformer-based GN2X architecture.
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CR/VR yields

Region noTag Tag noTag/Tag

CR 5166178 278 18583.4

VR 4657884 262 17778.2
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Gaussian Process Regressor (GPR)
In a GPR, the function values follow a Gaussian distribution:

f ∼ N
(
m(x), K (x, x′)

)
,

where m(x) is the mean function and K is the kernel encoding correlations.
Kernels used in this work:

• Constant: scales the overall variance.

k(x, x′) = σ2
c

• RBF (Radial Basis Function): smooth variations, different ℓ capture multiple scales.

k(x, x′) = σ2
f exp

(
− ∥x−x′∥2

2ℓ2

)
• Dot Product: adds a global linear trend.

k(x, x′) = σ2
0 + x · x′

• White Noise: models uncorrelated statistical noise.

k(x, x′) = σ2
n δx,x′
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Computing Correction

P(T = 1 | x) =
P(x | T = 1) · P(T = 1)

P(x)
P(T = 0 | x) =

P(x | T = 0) · P(T = 0)
P(x)

P(T = 1 | x)
P(T = 0 | x)

=
P(x | T = 1) · P(T = 1)
P(x | T = 0) · P(T = 0)

P(T = 1 | x) = p(x) P(T = 0 | x) = 1 − p(x)

⇒ w =
p(x)

1 − p(x)
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H1 and H2 simultaneous correction CR

H1 and H2 correction work well, probh1 and probh2 are independent →

weighth1h2 =
probh1 · probh2

1 − probh1 · probh2
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Comparison with old model

Estimation of the number of events with the old model:
• The background estimate in 2Pass SR is obtained automatically via:

Nold
SR = w · NSR, 1Pass

Estimation of the number of events with the new model:
1. Generate events in all regions using a 2D Gaussian Process regressor;
2. Evaluate the ratio

f =
SR events
CR events

for 2Pass with the specified cuts;
3. Determine the number of events in the control region from real data, Ndata

CR ;
4. Compute the estimated number of events in the signal region as

Ngen
SR = f · Ndata

CR .
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Neural Spline Flows Durkan et al. 2019

Flexible Transformations for Normalizing Flows

• Normalizing Flow: invertible map from noise z ∼ pz to data x :

p(x) = pz(f−1(x))
∣∣∣∣det ∂f−1

∂x

∣∣∣∣
• Standard flows use affine transformations limited flexibility.
• Neural Spline Flows (NSF):

◦ Replace affine maps with monotonic rational-quadratic splines.
◦ Preserve analytic invertibility + tractable Jacobian.

• Applications: density estimation, VAEs, image generation.
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