

Reducing Lepton Contributions to Large-Radius Jet Reconstruction in Boosted Analyses via the Particle Flow Algorithm in ATLAS

Edgar Eduardo Mata Mendoza, supervised by Chris Malena Delitzsch and Anubhav Gupta September 29, 2025

Jet reconstruction in ATLAS

The approach to the main analysis

- ullet The **highly boosted decay** $H o WW^* o \ell
 u q ar{q'}$ is analyzed
- $H \to \ell \nu \ell \nu$ or $H \to q q' q'' q'''$ are avoided due to difficult reconstruction and QCD background

Semi-leptonic channel of the Higgs decay

CMS Collaboration. "Displays of candidate events in the search for new heavy resonances

decaying to dibosons in the all-jets final state in the CMS detector". 2022

Jet reconstruction algorithms

- Jets are reconstructed by using algorithms that are divided into cone algorithms and sequential recombination algorithms
- ullet The ATLAS experiment uses the sequential recombination algorithm **Anti-k** $_{\mathcal{T}}$

Visualization of jet formation

The Particle Flow Algorithm

Features of the Particle Flow Algorithm

- Particle Flow Algorithm uses calorimeter and tracker measurements
- This allows for reconstruction from charged and neutral particles

S. P. Y. Yuen, "Improving the Reconstruction of Neutral Pions in Tau Decays Using the Strip

The algorithm in a nutshell

- Tracks and clusters are matched
- Expected energy in calorimeter is computed
- Expected energy deposited in the calorimeter is subtracted
- Unmatched topo-clusters are unmodified

The algorithm in a nutshell

- Tracks and clusters are matched
- Expected energy in calorimeter is computed
- Expected energy deposited in the calorimeter is subtracted
- Unmatched topo-clusters are unmodified

The algorithm in a nutshell

- Tracks and clusters are matched
- Expected energy in calorimeter is computed
- Expected energy deposited in the calorimeter is subtracted
- Unmatched topo-clusters are unmodified

Jet mass distributions

Jet mass distribution at the reconstructed level

Jet mass distribution at the truth level

Improvements to the PFlow

algorithm

The Modified Particle Flow Algorithm

- Follows the same procedure as the default version
- It does not add back the removed energy
- If lepton track is identified, both track and matching cluster energy is removed

The Modified Particle Flow Algorithm

- Follows the same procedure as the default version
- It does not add back the removed energy
- If lepton track is identified, both track and matching cluster energy is removed

The Modified Particle Flow Algorithm

- Follows the same procedure as the default version
- It does not add back the removed energy
- If lepton track is identified, both track and matching cluster energy is removed

Comparison between algorithms

Modified jet mass distributions

Modified jet mass distribution at the reconstructed level

Modified jet mass distribution at the truth level

Mass comparison between default and modified data

• The scenario in which leptons are matched to jets is analyzed

Validating the algorithms

Comparison in jet mass

- The lepton-free jet case is analyzed
- Default jet mass (x-axis) is compared against modified jet mass (y-axis).
- Off-diagonal events correspond to non-desired events

Type of events	Approx. percentage
Total events with no lepton matching Diagonal events Off-diagonal events	100.00 67.44 32.55

Modification due to pileup mitigation algorithms

- The effect of the Constituent Subtraction + Soft-Killer (CSSK) algorithm is analyzed
- Its usage modifies the jet masses

Type of events	Approx. percentage
Off-diagonal events	32.55
Mass without CSSK in agreement	23.08
Mass without CSSK in disagreement	9.47

Modification due overlapping jets

• The modified algorithm removes a lepton, which forces a lepton-free jet to shift its axis

	. percentage
Off-diagonal events Events with overlapping jets Events without overlapping jets	32.55 0.11 5.51

Conclusions and further

improvements

Conclusions and further improvements

- The modified algorithm demonstrated a significantly narrower jet mass distribution compared to the default algorithm
- A better understanding about the functioning of the modified algorithm for the lepton-free case is yet to be obtained
- The use of dijet simulated samples could lead to better results, as leptons should be totally excluded here
- Even if the modified algorithm requires further understanding, it significantly improves the jet mass reconstruction

Backup

Infrared safe algorithm

• In the expected reconstruction of two jets:

Infrared safe algorithm example

Infrared unsafe algorithm example

Collinear safe algorithm

• In the expected reconstruction of a single jet:

Infrared safe algorithm example

Infrared unsafe algorithm example

Mass responses

- The jet mass response is obtained without kinematic restrictions, and with restrictions
- The kinematic cut is m > 40 GeV and $p_T > 200$ GeV

Fraction of lepton's momentum carried by constituents

Comparison between algorithms in the lepton-free case

Comparison at the reconstructed level

Comparison at the truth level

Modification due to grooming algorithms

- The effect of the Soft Drop algorithm is analyzed
- Its usage removes the link between the jet and the lepton

Type of events	Approx. percentage
Off-diagonal events	32.55
Ungroomed jet with lepton	2.74
Ungroomed jet without lepton	6.72

Modification due to new Flow Elements

 The default algorithm creates a neutral Flow Element, which loses the link with the lepton

Type of events	Approx. percentage
Off-diagonal events	32.55
Events with new FE	0.62
Events without new FE	6.09

Modification due to rescaled Flow Elements

 The default algorithm rescales the neutral Flow Element, which loses the link with the lepton

Type of events	Approx. percentage
Off-diagonal events Events with rescaled FE	32.55 0.46
Events without rescaled FE	5.63