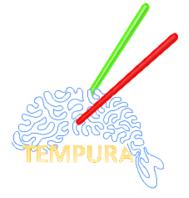
TEMPURA

Development of a diamond-based TEMPerature qUantum sensor to evaluate the effect of RAdiation in brain cells

Objective:

project goal is

to develop a novel temperature quantum sensors based on artificial diamond


✓ to assess if the ionizing radiation has effects on the cells functioning that can be detected by temperature variations.

WP1 (INFN-TO Leader): Development and fabrication of diamond sensors optimized for spatially resolved (quantum) thermometry.

WP2 (INFN-TO Leader): Theoretical Calculations of the thermal properties of nanopatterned diamond substrates

WP3 (INFN-BO Leader): Spatially resolved thermometry on cells in vitro

WP4 (INFN-BO Leader): Evaluate the effect of ionizing radiation on cells in vitro: quantum thermometry, fluorescence microscopy, cytofluorimetric essay

TEMPURA

Development of a diamond-based TEMPerature qUantum sensor to evaluate the effect of RAdiation in brain cells

INFN-TO (local coordinator: F. Picollo, total FTE 3.3)

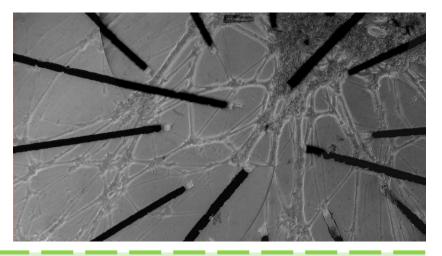
core expertise: Ion beam implantation; material processing and characterization

facilities: Solid State Physics laboratories

INFN-BO (national coordinator: A. Candini, total FTE 2.6)

core expertise: Quantum sensing, X-ray irradiation, neuroscience

facilities:


ODMR set-up, biological laboratories, X-ray microfocus source

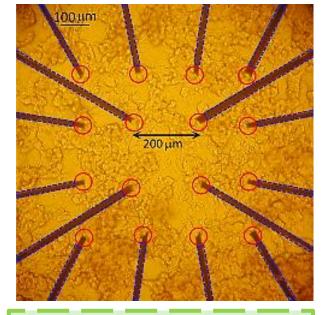
INFN TO - Members	
Amine	50%
Alessio	60%
Britel	50%
Olivero	30%
Picollo	40%
Sturari	40%
Truccati	40%
Vittone	20%

Project duration: 3 years (2025 – 2027)

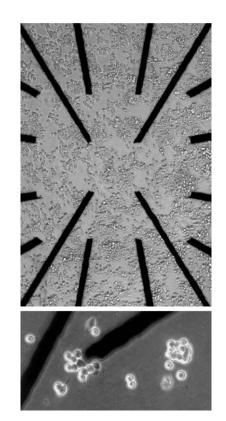
Total budget: 45 k€/year

In vitro experiments on diamond substrate

Substantia Nigra Neurons


- Mid-brain dopaminergic neurons
- Primary culture

Activity performed in CSN5 projects \rightarrow


- DINAMO (2013 2015)
- DIACELL (2016 2019)
- **RESOLVE (2020 2023)**

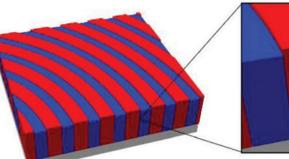
Large experience on *in vitro* application of diamond \rightarrow

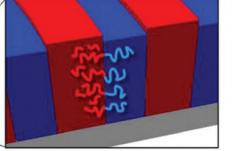
Possibility of growing for long period (several weeks) cells directly over diamond surface

Chromaffin cellNeuroendocrinal cells

PC12 cell linedopaminergic cell line

Self-Assembly of Block copolymers PS-b-PMMA on Diamond surface

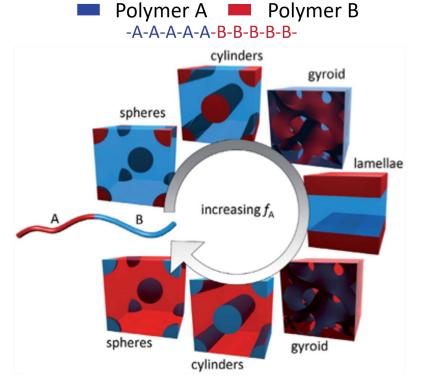

Thermal Annealing Microphase separation (Self-Assembly) Periodic arrangement at the nanoscale

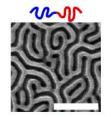


Possibility of controlling nanostructures organization by tuning monomer length

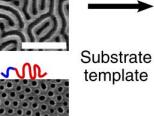
Higher scalability \rightarrow

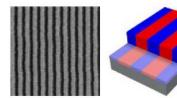
Possibility of patterning large surface area (whole diamond surface)

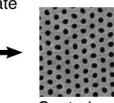


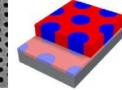


Microphase separation

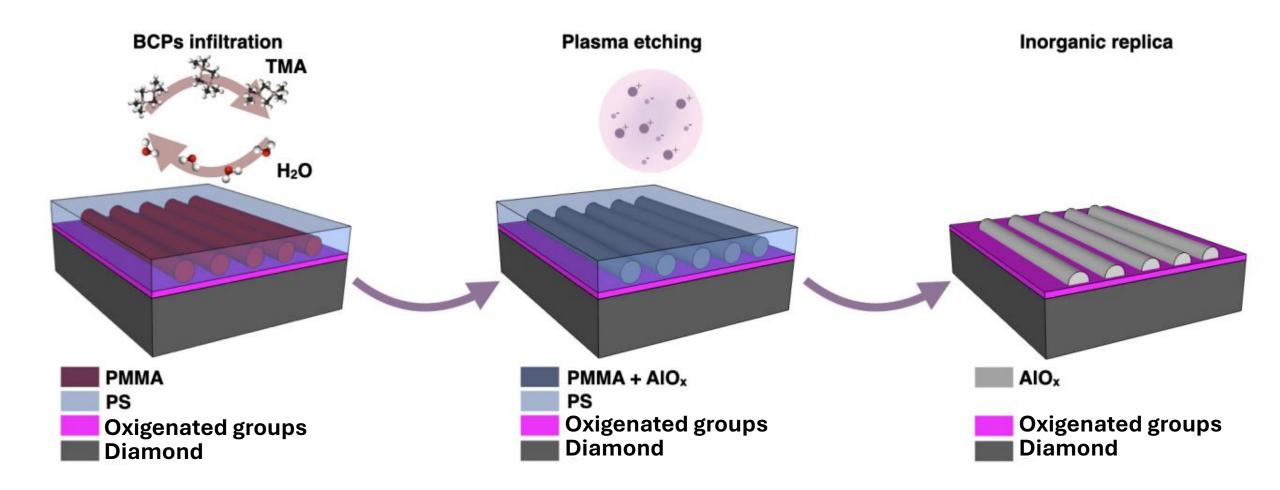

Higher spatial resolution \rightarrow

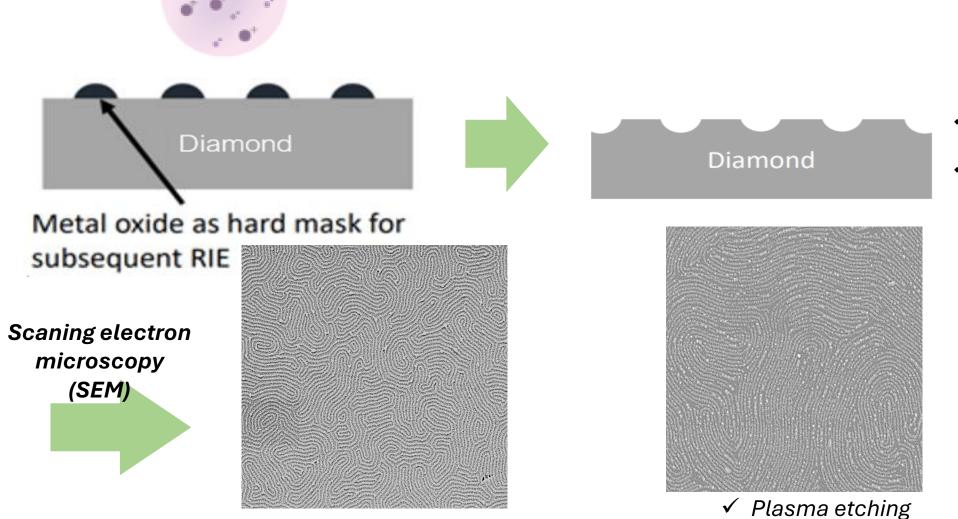

Structures patterned are at the nanoscale level





Pure BCPs




Control over registry

Self-Assembly of Block copolymers PS-b-PMMA on PIEMONTE QUANTUM ENABLING TECHNOLOGY Diamond surface

Sequential Infiltration Synthesis (SIS) of Block Copolymers (BCPs)

- Pattern transfer by reactive ion etching (RIE)
- Metal oxide removal (Sodium hydroxide)

Call CSN 5 – DIOMEDES :

"Detector Innovation and custOM Electronics for DEcay Spectroscopy"

Sezioni coinvolte: Milano, LNL, Torino, Padova

Coordinatore nazionale: Stefano Capra (UniMi)

Coordinatore locale: Sviatoslav Ditalia Tchernij

Obiettivo: Sviluppo di rivelatori al Ge per la rivelazione di prodotti di decadimento di fasci ionici radioattivi con energie di ≈100 GeV (**Presso SPES @ LNL**)

Contributo Torino: utilizzo impiantatore ionico per drogaggio del Ge impiegato nei detector

Budget richiesto per Torino: 80 k€ **FTE Torino**: 1.5