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Higgstory
Key ingredients in SM: EW vacuum ← Possibly least understood piece

Trivial vacuum → ? → EW vacuum
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EW Phase transition in the Standard Model

In the SM, EWPT is a crossover: the two phases are smoothly connected
Kajantie, Laine, Rummukainen, Shaposhnikov

• No barrier in the potential
• h rolls down to non-trivial

minimum for T < Tc

No strong breaking of thermal equilibrium, no distinctive experimental signatures

Perturbative evaluation of the effective potential:
(((((((((
1st order transition

Unreliable

Barriers fully generated by fluctuations must be taken with caution
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EWPhT and new physics
Multiple scalar fields
• Minima in several directions and barriers between them can be

present at tree-level

⇒ New physics may provide a first order phase transition ⇐

• h tunnels to non-trivial value
at Tn < Tc

• Transition proceeds through
bubble nucleation

The dynamics of the bubble wall can produce
• A significant breaking of thermal equilibrium (baryogenesis)
• Bubble collisions & turbulences in the plasma (gravitational waves)

Signatures that in principle make theory of EWPhT falsifiable



Introduction: EWPhT Bubble wall dynamics LTE Bubble dynamics in BSM models Conclusions

Dynamics of the bubble wall

System: scalar field φ + plasma
φ representative for the fields driving the PhT

• Expansion of the bubble wall in the false vacuum drives the plasma
out of equilibrium

• Plasma back-reacts: interactions between with the PhT front
produce a friction

• Balance between outward pressure and friction: steady state regime
with terminal velocity vw

In the follwing we assume a planar wall and a steady-state regime

Runaway solutions with vw = 1 do not exist
Gouttenoire, Jinno, Sala / Ai, Nagels, Vanvlasselaer / Azatov, Barni, Petrossian-Byrne / Ramsey-Musolf, Zhu / Ai, Carosi, Garbrecht,

Tamarit, Vanvlasselaer
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Set-up
Plasma described as a mixture of three components

1. Scalar fields participating in the transition
2. Background of weakly coupled species: ∼ local thermal equilibrium
3. Strongly coupled species: out-of-equilibrium contributions relevant

For each particle species: f (p, z) = fv (p, z)︸ ︷︷ ︸
LTE

+ δf (p, z)︸ ︷︷ ︸
OOE

1. Scalar field EOMs Moore, Prokopec

�φ(z)− ∂φV (φ,T ) = 1
φ′(z)

∑
i

Ni
dm2

dz

∫ d3p
(2π)32Ep

δfi

2. EM conservation for background → space-dependent profiles

fv = 1
eβ(z)γ(z)(E−vp(z)pz ) ± 1

3. Boltzmann equation for out-of-equilibrium C collision integral(
pz
E ∂z −

(m2)′
2E ∂pz

)
(fv + δf ) = −C[fv + δf ]
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Boltzmann equation and flow paths
Along flow paths p⊥ & p2

z + m2(z) are conserved De Curtis, Delle Rose, Gil Muyor, Guiggiani, Panico

L =
(

pz

E ∂z −
(m2(z))′

2E ∂pz

)
→ pz

E
d
dz

Trajectories in (p⊥, pz , z) phase space in collisionless limit C → 0

Three classes of solutions m(z) = m0(1 + tanh(z/L))

�

��

�

ϕ

��������� �����

������ �����

particles reflected

from the wall

pz reduced after

crossing the wall

pz augmented after

crossing the wall

��

�

Collision integral for 2→ 2 processes

C[f ] =
∑

i

1
4NpEp

∫
d3k d3p′ d3k′

(2π)52Ek 2Ep′2Ek′
|Mi |2δ4(p + k − p′ − k ′)P[f ]

P[f ] = f (p)f (k)(1± f (p′))(1± f (k ′))− f (p′)f (k ′)(1± f (p))(1± f (k))
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Linearised Boltzmann equations

(
pz

E ∂z −
(m2(z))′

2E ∂pz

)
δf + C[δf ] = (m2(z))′

2E ∂pz fv

Higher order contributions subdominant De Curtis, Delle Rose, Gil Muyor, Guiggiani, Panico

Collision integral splits in two pieces
• Terms proportional to δf (p) not integrated
• Terms with δf (q) inside the integral q = k, p′, k′

⇒ The equation can be put in the form
( d

dz −
Q
pz

)
δf = S

• Q
pz
↔ terms ∝ δf (p)

• S ↔ terms with integrated δf : corrections by iteration

δf =
[

B(p⊥, p2
z + m2(z)) +

∫ z

z̄
dz ′e−W(z′)S

]
W(z) =

∫ z

dz ′Qpz
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Out-of-equilibrium: an iterative approach
• Boltzmann: integro-differential equation hard to solve
• δf ↔ vp(z), T (z) depend on one another

Solutions using (truncated) moment expansion were used Moore, Prokopec

But several shortcomings ...
Laurent, Cline / Dorsch, Huber, Konstandin / De Curtis, Delle Rose, Gil Muyor, Guiggiani, Panico

Recently: iterative (numerical) approach to get full solution

De Curtis, Delle Rose, Gil Muyor, Guiggiani, Panico

At each step:

1. Consider the Boltzmann equation in the form
(

d
dz −

Q
pz

)
δf = S

with S calculated from δf at previous step
2. Calculate W and determine δf
3. Calculate S to be used in the next step (+ profile corrections, see later)

First step: LTE solution
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Hydrodynamics of the plasma

In LTE, hydrodynamics of the plasma fully determines bubble dynamics

LTE: drop Tµνout

Equations for the plasma are obtained from conservation of the EMT
Tµν = Tµν

φ + Tµν
pl + Tµν

out , Tµν
out =

∫ d3p
(2π)3 pµpνδf

T 30 = w γ2vp + T 30
out = c1

T 33 = (∂zφ)2

2 − V (φ,T ) + w γ2v 2
p + T 33

out = c2

w = T∂T V enthalpy, vp plasma velocity, γ =
(√

1 − v2
p

)−1

Constants c1/2: boundaries for vp and T + = in front of the wall, − = behind the wall
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Combustion regimes
Two branches: v+ > v−, v+ < v− . v±, T± depend on vw : three classes
• Detonations, vw > vJ :

plasma at rest in front of the wall, followed by rarefaction wave

vw = v+, Tn = T+

• Deflagrations, vw < c−s :
plasma at rest behind wall, shock wave in front of it

vw = v−, Tn = T SW
+

• Hybrids, c−s < vw < vJ :
combination of both, shock front + rarefaction wave

v− = c−s , Tn = T SW
+

Espinosa, Konstandin, No, Servant
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Scalar EOMs

Our interest is in 2-step PhTs driven by two fields h, s, (0, 0)→ (0, s̄)→ (h̄, 0)

Eh ≡ −∂2
z h + ∂V (h, s,T )

∂h

(
+ F out

h (z)
h′

)
= 0

Es ≡ −∂2
z s + ∂V (h, s,T )

∂s

(
+ F out

s (z)
s ′

)
= 0

Approximate solution: tanh ansatz

h(z) = h−
2

(
1 + tanh

( z
Lh

))
s(z) = s+

2

(
1− tanh

( z
Ls
− δs

))
h− : ∂hV (h, 0,T−) = 0, s+ : ∂s V (0, s,T+) = 0

4 parameters to determine: T−, δs , Lh, Ls
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Constraints
Trade the differential equations for four constraints eqs

Ph =
∫

dz Ehh′ = 0 Gh =
∫

dz Eh

(
2 h

h−
− 1
)

h′ = 0

Ps =
∫

dz Ess ′ = 0 Gs =
∫

dz Es

(
2 s

s+
− 1
)

s ′ = 0

P pressure, G pressure gradients

In LTE

Ph + Ps = ∆V −
∫

dz(∂T V )T ′: non-trivial T -profile → LTE friction

Analytic considerations suggest that:
-Ph + Ps mainly depends on T− → vw
-Ph − Ps (mainly) determines δs
-Gi = 2φ2

i /15L2
i + gi (T−, δs , Lh/Ls) Lh/Ls ∼ h−/s+
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Solving the eqs: numerical algorithm
As of now:
• In LTE (hydrodynamic + scalar) we explored the parameter space of

models with 2-step PhT
• Inclusion of out-of-equilibrium done for benchmark points

Scan on parameter space: initial guess = result on nearest neighbour
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Models
We consider three models: singlet extension of the SM (SSM), triplet extension
of the SM (RTSM), inert 2HDM (IDM), common tree-level potential

V0(h, s) = µ2
h

2 h2 + µ2
s

2 s2 + λh

4 h4 + λs

4 s4 + λhs

4 h2s2

Preliminary: determine 2-step region w/ CosmoTransitions (slightly modified)
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One can easily check that the barrier is mainly generated by Parwani-resummed
tree-level potential

V P
0 (h, s,T ) = V0(h, s) + chT 2

2 h2 + csT 2

2 s2
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Results: SSM, λs = 1
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Only deflagrations in LTE
We complement this showing it with analytic study of P

Earlier suggestion in [Ai, Laurent, van de Vis, ’23]
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Constraints
De Curtis, Delle Rose, Gil Muyor, Guiggiani, Panico
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• Out-of-equilibrium: additional source of friction. Strong impact !
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Profiles

• Plasma profiles are nearly flat far from bubble front
• γ(z)T (z) = cte due to entropy conservation in LTE Ai, Garbrecht, Tamarit

Ptot = ∆V −
∫

dz ∂V
∂T T ′(z)

→ T (z) decreasing ensures Ptot = 0 has physical solution
↑

Deflagrations
In detonations T (z) decreases: ONLY OOE contributions can generate them
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Results in terms of PhT parameters
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vw turns out to depend (∼) linearly on Tc , Tn/Tc

• vJ too, with isolines nearly orthogonal
• ⇒ upper bound on the amount of supercooling
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Comparing the models

Model vw (Tc/v ,Tn/Tc) (Tn/Tc)min(Tc)
SSM λs = 1 1.60 + 0.15 x − 1.14 y 0.71 + 0.42 x
SSM λs = 2 1.60 + 0.15 x − 1.14 y 0.71 + 0.42 x
RTSM λσ = 1 1.60 + 0.13 x − 1.12 y 0.73 + 0.39 x
RTSM λσ = 2 1.59 + 0.13 x − 1.12 y 0.72 + 0.40 x
IDM λ2 = 1/2 1.60 + 0.07 x − 1.09 y 0.75 + 0.34 x
IDM λ2 = 1 1.60 + 0.05 x − 1.08 y 0.76 + 0.32 x

• Weak dependence on the model and on the self-coupling of the
additional state

Toward a model-independent characterization of vw in terms of PhT
parameters ... ?
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Conclusions and outlook
Conclusions:
• First order EWPT: theoretically and experimentally compelling
• Strategy put forward to provide full solution of the (steady-state)

wall dynamics
• In LTE: complete solution in the parameter space of BSM models

1. Only deflagration solutions
2. Linear fit of vw (Tc ,Tn/Tc ) to an excellent approximation
3. Weak model dependence

• Out-of-equilibrium effects can have a significant impact

Outlook :
• Explore parameter space with out-of-equilibrium
• Inclusion of 1→ 2 and 2→ 1 processes in C
• Possible release of the code
• Improve input: non-perturbative evaluation of the potential



Numerical algorithm: hydrodynamics + scalars

0. Calculate Jouguet velocity vJ and speed of sound c−s (Brent’s method)

1. Starts with an initial guess for vw , δs , Lh and Ls

2. Calculate the four constraints. Computation of the constraints requires
T (z): a function that computes it is then called. This function compares vw to
vJ , and classifies the tentative solution in terms of its combustion regime.

3a. Solve boundary conditions for detonations: T+ = Tn (s+ = sn), v+ = vw .
T− and v− found using the matching equations.

3b. Solve boundary conditions for deflagrations/hybrid: T SW
+ = Tn and

v− = vw (c−s ). Use fluid equations to determine T+ (shooting method), then
proceeds as for detonations.

4. Constraints are finally obtained to perform the numerical integration. The
values of vw , δs , Lh and Ls are progressively refined until the solution is found.
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