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Motivation



Motivation

▶ Field theories, and in particular QCD, change their behaviour changing
energy scale =⇒ Phase transitions:

▶ turn from weak to strong
coupling;

▶ change in the relevant
degrees of freedom

▶ Different realization of the
fundamental symmetries.

Guenther, J.N. Overview of the QCD phase diagram.
Eur. Phys. J. A 57, 136 (2021).

▶ A non-perturbative approach is needed.

▶ Possible solution =⇒ Functional Renormalization Group (FRG)
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Motivation

▶ Why FRG?

Non-perturbative;
Fluctuations are taken into account not all at once but from scale to
scale;
No a priori limitations. However...

▶ Difficult application to full QCD ⇒ Effective field theories and models.

▶ Advantages:

Capture the (expected) essential features of the system in a given
regime;
Insight on the relevant degrees of freedom;
Simpler calculations;

▶ Disadvantage:

Not the full theory ⇒ loss of information.

▶ In this work we focus on chiral symmetry of QCD:

Quark-Meson model.

Fabrizio Murgana Non-perturbative insights into QCD via FRG 9 June 2025 2 / 16



The Functional Renormalization Group



FRG Flow Equation
▶ FRG implements Wilson’s RG approach ⇒ Fluctuations integrated by momentum shells.

▶ We consider the (scale dependent) effective average action Γk

Γk→Λ = Sbare Γk→0 = Γ

▶ Γk can be constructed defining an IR regulated generating functional

eWk[J] ≡ Zk[J ] :=

∫
Λ
Dφe−S[φ]−∆Sk[φ]−

∫
Jφ

▶ where ∆Sk is a regulator term of the form

∆Sk[φ] =
1

2

∫
dDp

(2π)D
φ(−p)Rk(p)φ(p)

▶ The effective average action is given by:

Γk[ϕ] = sup
J

(∫
Jϕ−Wk[J ]

)
−∆Sk[ϕ]
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FRG Flow Equation

The Wetterich flow equation describes the k-(or t-)evoultion of Γk:

∂tΓk[ϕ] =
1

2
Tr
[
∂tRk(Γ

(2)
k [ϕ] +Rk)

−1
]

t = − ln
k

Λ

Key features:

▶ Exact one-loop structure;

▶ The purpose of the regulator is twofold:

IR Regularization;
Implements the idea of integrating over momentum shells p2 ∼ k2;

▶ The flow equation is a functional integro-differential equation for Γk;

▶ Difficult to solve exactly ⇒ we need some ansatz.

▶ We will use a derivative expansion:

Γk[ϕ] =

∫
dDx

[
Vk(ϕ) +

1

2
Zk(ϕ)(∂µϕ)

2 +O(∂2)

]
.

[1] C. Wetterich, Phys. Lett. B 301 (1993) 90-94.
[2] K. G. Wilson, Phys. Rev. B 4, (1971) 3174, Phys. Rev. B 4, (1971) 3184.
[3] J. Berges, N. Tetradis, C. Wetterich, Phys.Rept. 363 (2002) 223-386.
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The Quark-Meson model



Quark-Meson model

▶ The Nf = 2 QM model uses as fundamental degrees of freedom mesons coupled
to quarks

LEQM = ψ̄(γµ∂
µ + h(σ + iγ5τ⃗ π⃗))ψ +

1

2
(∂µσ)

2 +
1

2
(∂µπ⃗)

2 + U(σ2 + π⃗2)

▶ Chiral phase transition: SSB O(4) → O(3)

⟨ψ̄ψ⟩ ≃ ⟨σ⟩

{
> 0 ⇔ symmetry breaking T < Tc
= 0 ⇔ symmetry restoration T > Tc

▶ 3 massless Goldstone bosons (pions).

▶ Expected features of the QM model

phase diagram:

2nd order phase transition at
µ = 0;
1st order phase transition at
T = 0;
critical endpoint.
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Finite quark mass

▶ In order to mimic the presence of a finite current quark mass we use a term

Lm = −cσ

▶ The O(4) symmetry is (also) explicitly broken by the term −cσ ⇒
spontaneous symmetry-breaking pattern is not exact;
⟨σ⟩ → 0 never exactly;
the O(4) symmetry is never exactly restored;
Pions turn into massive pseudo-Goldstone mesons.

▶ Phase diagram:

Crossover at µ = 0;
1st-order phase transition at
T = 0;
critical endpoint.
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Quark-Meson model: FRG setup

▶ Ansatz for effective action: LPA

Γk[Ψ̄,Ψ, ϕ] =

∫ β

0
dx0

∫
d3x

{
ψ̄
(
γµ∂

µ + h(σ + iγ5τ⃗ π⃗)− µγ0
)
ψ +

1

2
(∂µϕ)

2 + Uk(ϕ
2)

}
▶ We can express the flow equation in terms of uk(σ) = ∂σUt(σ)

∂tuk(σ) + ∂σfk(σ, uk(σ)) = ∂σgk(u
′
k(σ)) +Nc∂σSk(σ)

▶ Advection and diffusion fluxes

fk(σ, uk) = fk(Ek,π) gk(u
′
k) = gk(Ek,σ)

where

Ek,π =
√
k2 + uk(σ)/σ Ek,σ =

√
k2 + u′k(σ) .

▶ Source term:

Sk(σ) = Sk(Ek,Ψ) Ek,Ψ =
√
k2 + (hσ)2

[4] E. Grossi and N. Wink (2019), arXiv:1903.09503.
[5] A. Koenigstein, M. J. Steil, N. Wink, E. Grossi, J. Braun, M. Buballa, and Dirk H. Rischke, Phys. Rev. D 106, 065012 (2022)
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Thermodynamic geometry



Thermodynamic geometry: The concept

▶ An equilibrium state for a thermodynamic system can be characterized by the pair
(β = 1/T , γ = −µ/T ).

▶ Key idea: we consider the (β, γ)-space as a two-dimensional manifold.

▶ We introduce a distance in this space

dl2 = gββdβdβ + 2gβγdβdγ + gγγdγdγ ,

where the metric tensor is

gij =
∂2 logZ
∂βi∂βj

=
∂2ϕ

∂βi∂βj
≡ ϕ,ij ,

with ϕ = βP , P = −Ω, β1 = β and β2 = γ.

▶ One can define the Riemann tensor as

Riklm =
∂Γikm
∂xl

− ∂Γikl
∂xm

+ ΓinlΓ
n
km − ΓinmΓnkl,

with the Christoffel symbols

Γikl =
1

2
gim

(
∂gmk
∂xl

+
∂gil
∂xk

− ∂gkl
∂xm

)
.

▶ Ricci tensor Rij = Rkikj , and scalar curvature R = Rii. Within thermodynamic
geometry, R is called the thermodynamic curvature.
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Thermodynamic geometry: The concept

▶ For our two-dimensional manifold we have

R = − 1

2 g2

∣∣∣∣∣∣∣
ϕ,ββ ϕ,βγ ϕ,γγ
ϕ,βββ ϕ,ββγ ϕ,βγγ
ϕ,ββγ ϕ,βγγ ϕ,γγγ

∣∣∣∣∣∣∣ ,
▶ R depends on the second- and third-order moments of the thermodynamic

variables ⇒information about the fluctuation of the physical quantities.

▶ Close to a second-order phase transition |R| ∝ ξ3 → ∞ ⇒ information on the
correlation volume.

▶ R can convey details about the nature of the interaction:

R > 0 indicates an attractive interaction;
R < 0 corresponds to a repulsive one.

▶ These interactions include also the statistical attraction and repulsion in phase
space :

1. R < 0 for an ideal Fermi gas;
2. R > 0 for an ideal Bose Gas;
3. R = 0 for an ideal classical gas.
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Thermodynamic geometry: Results

▶ Crossover region ( µ≪ µc):

R peaked around the pseudo-critical temperature ⇒ R sensitive to the chiral
crossover;
MF positive peaks, FRG negative ones ⇒ the sign is sensitive to the approximation;

▶ Critical region ( µ ∼ µc):

R enhanced close to the critical point ⇒ R sensitive to the chiral phase transition;

For both MF and FRG, R shows a positive peak ⇒ Qualitative behavior of R
independent of the approximation.

[6]Murgana et al Phys. Rev. D 109, no.9, 096017 (2024)
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Testing reconstruction from imaginary chemical
potential



Testing reconstruction: Motivation

▶ Motivation: Study the QCD phase diagram using both FRG (applied to effective
models) and lQCD.

▶ Challenge:

lQCD faces the ”sign problem” at finite µ, making direct simulations difficult;
Reconstruction techniques from imaginary µ can be used.

▶ Key Questions:

How reliable is the extrapolation from imaginary µ?
How to test it?

▶ Idea: Use the FRG (applied to the QM model):

Non-perturbative.
No a priori limitations (sign problem)

▶ In this framework one has access to both:

Direct results at both real and imaginary µ.
Extrapolated results from imaginary µ.

▶ Comparison and test is possible and well controlled.
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Testing reconstruction: Results

▶ Phase Boundary:

Direct calculation: Tc defined by the peak of the chiral susceptibility:

χσ = −
∂⟨σ⟩
∂T

Used for both real and imaginary µ.
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[7] F. Murgana and M. Ruggieri arXiv 2505.04569 (2025)
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Testing reconstruction: Results

▶ Phase Boundary:
Reconstructed from imaginary µ:

Tc(µ)

Tc
= 1− κ2

(
µ

Tc

)2

− κ4

(
µ

Tc

)4

▶ Results:
Excellent agreement at low µ (crossover region).
Growing discrepancy near CEP.
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[7]F. Murgana and M. Ruggieri arXiv 2505.04569 (2025)
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Testing reconstruction: Results

▶ Convergence Radius:

εrel =
|Tc − T

(fit)
c |

Tc
;

µconv such that εrel ≤ 0.1 ;
Effective radius µconv ≈ 146 MeV (both MF and FRG);
εrel ≈ 1.5 near CEP (model dependent), limiting extrapolation reliability.
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[7]F. Murgana and M. Ruggieri arXiv 2505.04569 (2025)
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Conclusions and Outlook



Conclusions and Outlook

▶ We described the FRG approach to QFT and in particular FRG flow equation;

▶ We applied an hydrodynamic approach to the FRG method in order to study the phase
diagram of the Quark-Meson model;

▶ We explored the QM model phase diagram using the Thermodynamic Geometry

technique:

R is peaked around the pseudo-critical temperature⇒ R sensitive to chiral
crossover;

R exhibits a positive sharper peak around the critical temperature⇒ R sensitive to
chiral phase transition;

Qualitative behavior of R independent of the approximation close to criticality.

▶ We tested reconstruction techniques from imaginary µ with FRG:

within FRG results from both real and imaginary µ are available for comparison;

Extrapolation from imaginary µ works well for µ < µconv ≃ 146 MeV;

Near CEP, non-analytic effects cause large errors.
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Conclusions and Outlook

What’s next?

▶ Possible generalizations to higher order truncations (LPA’, O(∂2), ...):

Extension of the hydrodynamic formulation beyond LPA (inhomogeneous
phases);

Study the Thermodynamic Geometry for the QM model beyond LPA;

Study the influence of truncation on the reconstruction procedure of the
phase diagram.

▶ Inclusion of different chemical potential axes in the thermodynamic geometry
framework (µI and exact comparison with lattice at µB ∼ 0);

▶ Improve reconstruction techniques for critical regions;

▶ Extend to Polyakov-loop models for confinement-deconfinement transition;

▶ More realistic QCD description with FRG to cross-validate with other methods
(DSE, lattice).
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Conclusions and Outlook

Thanks for your attention!
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Functional approach to Quantum field theory



Functional approach to QFT

Quantum field theory
In quantum field theory (QFT), all physical information is stored in the
generating functional Z[J ]

Z[J ] ≡ N
∫

Dφe−S[φ]+
∫
Jφ (1)

since all n−point functions can be obtained via a functional differentiation

⟨φ(x1) · · ·φ(xn)⟩ := N
∫
Dφφ(x1) · · ·φ(xn)e−S[φ] =

∂n

∂Jn
Z[J ]

∣∣∣∣
J=0

(2)
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Functional approach to QFT

One introduces the generating functional of connected correlators W [J ]:

Z[J ] ≡ eW [J ] =

∫
Dφe−S[φ]+

∫
Jφ (3)

Performing a Legendre transform of W [J ] we obtain the effective action Γ:

Γ[ϕ] = sup
J

(∫
Jϕ−W [J ]

)
(4)

At J = Jsup , we get

δ

δJ(x)

(∫
Jϕ−W [J ]

)
= 0

⇒ ϕ =
δW [J ]

δJ
=

1

Z[J ]

δZ[J ]

δJ
= ⟨φ⟩J (5)
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Functional renormalization group



Functional renormalization group

Flow equation
A versatile approach to the computation of Γ is based on Renormalization
Group RG concepts.
We are looking for an interpolating action Γk, the effective average action,
such that

Γk→Λ = Sbare , Γk→0 = Γ (6)

This can be constructed through the definition of the IR regulated
functional

eWk[J ] ≡ Zk[J ] := exp

(
−∆Sk

[
δ

δJ

])
Z[J ] =

=

∫
Λ
Dφe−S[φ]−∆Sk[φ]−

∫
Jφ (7)
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Functional renormalization group

where ∆SK is a regulator therm of the form

∆Sk[φ] =
1

2

∫
dDq

(2π)D
φ(−q)Rk(q)φ(q) (8)

The regulator function Rk(q) should satisfy

lim
q2/k2→0

Rk > 0 (9)

lim
k2/q2→0

Rk(q) = 0 (10)

lim
k2→Λ2→∞

Rk(q) → ∞ (11)
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Functional renormalization group

We introduce the RG-time t, using the abbreviations

t = ln
k

Λ
, ∂t = k

d

dk
(12)

Keeping the source J fixed, i.e. k independent, we obtain

∂tWk[J ] = −1

2

∫
dDq

(2π)D
∂tRk(q)Gk(q)− ∂t∆Sk[ϕ] (13)

Here, we have defined the connected propagator

Gk(p) =

(
δ2Wk

δJδJ

)
(p) = ⟨φ(−p)φ(p)⟩ − ⟨φ(−p)⟩⟨φ(p)⟩ (14)
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Functional renormalization group

We define the interpolating effective action Γk

Γk[ϕ] = sup
J

(∫
Jϕ−Wk[J ]

)
−∆Sk[ϕ] (15)

At J = Jsup :

ϕ(x) = ⟨φ(x)⟩J =
δWk[J ]

δJ(x)
(16)

Computing the functional derivative of Eq. (15) with respect to ϕ we get

J(x) =
δΓk[ϕ]

δϕ(x)
+ (Rkϕ)(x) (17)

From this, we deduce:

δJ(x)

δϕ(y)
=

δ2Γk[ϕ]

δϕ(x)δϕ(y)
+Rk(x, y) (18)
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Functional renormalization group

We obtain from Eq. (16):

δϕ(y)

δJ(x′)
=

δ2Wk[J ]

δJ(x′)δJ(y)
≡ Gk(y − x′) (19)

This implies the important identity

I = (Γ(2) +Rk)Gk (20)

Here, we have introduced the notation

Γ
(n)
k (x1, · · ·xn) =

δnΓk[ϕ]

δϕ(x1) · · · δϕ(xn)
(21)

Finally we can derive the flow equation for Γk for fixed ϕ and at J = Jsup:

∂tΓk[ϕ] =
1

2
Tr
[
∂tRk(Γ

(2)[ϕ] +Rk)
−1
]

(22)
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Functional renormalization group

Γk[ϕ] = sup
J

(∫
Jϕ−Wk[J ]

)
−∆Sk[ϕ]

We can derive the flow equation for Γk:

∂tΓk[ϕ] =
1

2
Tr
[
∂tRk(Γ

(2)
k [ϕ] +Rk)

−1
]

(23)

where

t = − ln
k

Λ
∂t = −k d

dk

We need some ansatz to solve the flow equation. We will use the
derivative expansion.

[1] C. Wetterich, Phys. Lett. B 301 (1993) 90-94.
[2] K. G. Wilson, Phys. Rev. B 4, (1971) 3174, Phys. Rev. B 4, (1971) 3184.
[3] J. Berges, N. Tetradis, C. Wetterich, Phys.Rept. 363 (2002) 223-386.
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Functional renormalization group

We can notice that:

▶ The flow equation is a functional differential equation for Γk;

▶ We may define QFT based on the flow equation.

▶ The purpose of the regulator is twofold;

▶ The solution of the flow equation corresponds to an RG trajectory in
theory space;

▶ The variation of the trajectory with respect to Rk reflects the RG
scheme dependence of a non-universal quantity, but the final point on
the trajectory is independent of Rk;

▶ Perturbation theory can immediately be re-derived from the flow
equation, for instance, imposing the loop expansion on Γk,
Γk = S + ℏΓ1−loop

k .
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Functional renormalization group

Various systematic approximation exist which can be summarized under
the label of method of truncations.
A first example for such an approximation scheme is the vertex expansion,
which now reads

Γk[ϕ] =

∞∑
n=0

1

n!

∫
dDx1 · · · dDxn Γ(n)

k (x1 · · ·xn)ϕ(x1) · · ·ϕ(xn) (24)

As a second example, let us introduce the operator expansion

Γk =

∫
dDx

[
Vk(ϕ) +

1

2
Zk(ϕ)(∂µϕ)

2 +O(∂4)

]
(25)

where, for instance, Vk(ϕ) corresponds to the effective potential.
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Flow equation O(N) LPA



Flow queation O(N) LPA

As ansatz for Γk we will use the LPA:

Γk[ ϕ⃗ ] =

∫
x

{
1

2
(∂µϕa)

2 + Vk(t, ρ)

}
(26)

where Vk(t, ρ) is the effective potential.

Then we compute the two point functions Γ
(2)
k :

Γ
(2)
k,ab(t, ρ, p) = [p2 + V ′

k(t, ρ)]δab + 2ρV ′′
k (t, ρ)δaNδbN (27)

with
V ′
k(t, ρ) = ∂ρVk(t, ρ) and V ′′

k (t, ρ) = ∂ρV
′
k(t, ρ)

As regulator, we chose the Litim Regulator

Rk(p) = (k2 − p2)Θ(k2 − p2) (28)

[6] Daniel F. Litim, Phys. Rev. D 64, 105007 (2001).
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Flow equation O(N) LPA

Inserting Eq.s (27)-(28) into (23) we obtain the flow equation for Vk(t, ρ)

∂tVk(t, ρ) = −Ad kd+2

(
N − 1

k2 + V ′
k(t, ρ)

+
1

k2 + V ′
k(t, ρ) + 2ρV ′′

k (t, ρ)

)
(29)

with Ad =
Ωd

(2π)dd
, and Ωd =

2πd/2

Γ( d
2
)
.

It is preferable to formulate the problem in terms of the field σ =
√
2ρ.

We thus rewrite the flow equation as:

∂tVk(t, σ) = −Ad kd+2

(
N − 1

k2 + 1
σ∂σVk(t, σ)

+
1

k2 + ∂2σσVk(t, σ)

)
(30)

We introduce the derivative of the potential as new variable

u(t, σ) = ∂σVk(t, σ), u′(t, σ) = ∂σu(t, σ) (31)
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Other plots O(N)



Different t broken phase
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Different t symmetric phase
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Different N
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Scaling of ρc0 vs N
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Testing the method: numerical precision and error
estimates



Numerical precision and error estimates

We use critical exponents as a test ground for the capabilities and
limitations of our method.
We analize the following contribution to the error:

▶ general fit errors;

▶ error on the determination of the curvature mass in the IR;

▶ error on the determination of the position of the minimum in the IR
σIR
0 .
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General fit error

▶ Using linear regression to extract the critical exponent is not enough!

▶ The fitting region influences the value of the critical exponents.
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General fit error

▶ Ideally, the critical exponent should be independent of the fitting
region (perfect scaling behavior);

▶ We choose the region in which the critical exponent is ”less
dependent” on the fitting region.
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General fit error
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▶ The fitting error is independent of the number density.

▶ The Fitting error is more relevant for the critical exponent ν.
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Error on m2

▶ Numerical method is used ⇒ discretization error;

▶ We look for a region for which m2 is independent of ∆σ;

▶ We can lower the discretization error
lowering ∆σ;

▶ No further error on IR extrapolation.
∆m

2
rel(∆σ) =

∣∣∣∣∣∣1 −
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Error on σIR

0

▶ In the broken phase, the flow equation becomes stiff⇒ it is not possible to
go arbitrarily far in the IR.

▶ We can determine the position of the minimum σIR
0 via exponential

extrapolation:

lnσ0 = a k + b , ⇐⇒ σ0 = eb eak .
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Error on σIR

0

▶ Even after the extrapolation the uncertainty on σIR
0 is still limited from

below by ∆σ.

▶ One can determine whether σ0 lies to the left or the right of the cell
center, such that the uncertainty is ∆σIR

0 ≲ ∆σ/2.
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Error on σIR

0

▶ The error on log σIR
0 depends on σIR

0 itself:

∆ lnσ
IR
0 =

∆σIR0

σIR0

=
∆σ

2σIR0

.

▶ We use the errors on the left and right edge of the fitting region

∆βextr =
∆ lnσ

IR,left
0 + ∆ lnσ

IR,right
0

∆ϱfit

,
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ln
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Error values

▶ Using typical values encountered during the calculations, i.e.,
∆ϱfit ≃ 3.5, ∆σ = 0.0005 one finds

∆βextr ≃ 0.006 .

▶ This contribution is significantly larger than the ones coming from the
fit error,

∆βfitting region ∼ 0.0006 ∆βfit ∼ 0.0002 .

▶ For the critical exponent ν, the dominant contribution arises from the
choice of the fitting region:

∆νfitting region ∼ 0.02

∆νfit ∼ 0.0002 ∆νm2 ∼ 0.00005
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Local speed
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Flow equation O(N) LPA’

In addition to the effective potential Vk(t, ρ), the effective action includes
a field renormalization factor Zk (in the LPA Zk = 1) which is field
independent:

Γk[ ϕ⃗ ] =

∫
dDx

[
1

2
Zk(∂µϕa)

2 + Vk(t, ρ)

]
(32)

One can then define a “running” anomalous dimension

ηk = −k ∂k lnZk = ∂t lnZk (33)

At the critical point one has

lim
k→0

ηk ≡ η (34)
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Flow equation O(N) LPA’

We need to compute the 2-point function. We choose a simple
background field

ϕ⃗ = (0, · · · , 0, σ)

Γ
(2)
k,ab(p, ϕ⃗) =

ϕaϕb
2ρ

Γ
(2)
k,L(p, σ) +

(
δab −

ϕaϕb
2ρ

)
Γ
(2)
k,T (p, σ) (35)

where
Γ
(2)
k,L(p, σ) = Zkp

2 + ∂2σσVk(t, σ) (36)

Γ
(2)
k,T (p, σ) = Zkp

2 +
1

σ
∂σVk(t, σ) (37)

Analogously, we can introduce the longitudinal and transverse propagators:

Gk,α(p, σ) =
[
Γ
(2)
k,α(p, σ) +Rk(p)

]−1
α = L, T (38)
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Flow equation O(N) LPA’

Now we just need to plug Eq (47) into the flow equation :

∂tVk(t, σ) =
1

2

∫
q
∂tRk(q)

[
Gk,L(q, σ) + (N − 1)Gk,T (q, σ)

]
=

=
1

2

∫
q
∂tRk(q)

[
1

Zkq2 +
1
σ∂σVk(t, σ) +Rk(q)

+

N − 1

Zkq2 + ∂2σσVk(t, σ) +Rk(q)

]
(39)

As regulator we choose:

Rk(p) = αZk(k
2 − p2)Θ(k2 − p2) (40)

with α ∼ 1 as a free parameter.
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We obtain the flow equation for the effective potential:

∂tVk(t, σ, ηk) =
α

4π2(1− α)
k3
{
(N − 1)

{ [
ηk (1 +m1)− 2

]
×

(
1−√

m1 arctan
1√
m1

)
−1

3
ηk

}
+

{ [
ηk (1 +m2)− 2

]
×

(
1−√

m2 arctan
1√
m2

)
− 1

3
ηk

} (41)

where:

m1(Zk, ∂σVk, σ) =
α

1− α
+

∂σVk
Zk σ k2 (1− α)

(42)

m2(Zk, ∂
2
σσVk) =

α

1− α
+

∂2σσV

Zk k2 (1− α)
(43)
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Flow equation O(N) LPA’

We introduce the conserved quantity

u(t, σ, ηk) = ∂σVk(t, σ, ηk) (44)

and
u′(t, σ, ηk) = ∂σu(t, σ, ηk) = ∂2σσVk(t, σ, ηk) (45)

Thus we can rewrite

m1(Zk, u, σ) =
α

1− α
+

u

Zk σ k2 (1− α)
(46)

m2(Zk, u
′) =

α

1− α
+

u′

Zk k2 (1− α)
(47)
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Flow equation O(N) LPA’

We can now define the convection flux

f(k, u, σ, ηk) =
α

4π2(1− α)
(N − 1)k3×

×

[2− ηk (1 +m1)
](

1−√
m1 arctan

1√
m1

)
+

1

3
ηk

 (48)

and the diffusion flux

g(k, u′, ηk) =
α

4π(1− α)
k3×

×

[ηk (1 +m2)− 2
](

1−√
m2 arctan

1√
m2

)
− 1

3
ηk

 (49)

We take a derivative of the flow equation with respect to σ:

∂tu(t, σ, ηk) + ∂σf(t, u, σ, ηk) = ∂σg(t, u
′, ηk) (50)
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Flow equation O(N) LPA’

From the definition of the effective action we derive that

Zk = lim
p→0

∂

∂p2
Γ
(2)
k,T (p, σ0,k) (51)

Trivially we can obtain an equation for ∂tZk just taking the derivative
w.r.t RG time t:

∂tZk = lim
p→0

∂

∂p2
∂tΓ

(2)
k,T (p, σ0,k) (52)

Now we can easily exploit the flow equation for Γk to obtain a flow

equation for Γ
(2)
k :

∂tΓ
(2)
k [ ϕ⃗ ] =

1

2
Tr

[
∂tRk

δ2

δϕaδϕb
(Γ

(2)
k [ ϕ⃗ ] +Rk)

−1

]
(53)
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Flow equation O(N) LPA’

Computing the derivatives, projecting onto the transverse direction and
summing over the indices one obtains

∂tZk = 4Ad∂
2
ρρVk(ρ0,k, t)∂̃t

∫ ∞

0
dq qd+1∂q2Gk,L(q, ρ0,k) ∂q2Gk,T (q, ρ0,k)

(54)
where the symbol ∂̃t indicates that the time derivative acts only on the t
dependence of Rk.
It is convenient to introduce the following dimensionless quantities:

ρ̃ = Zkk
2−dρ Ṽk(ρ̃, t) = k−dVk(ρ, t) (55)
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Flow equation O(N) LPA’

We will also use the dimensionless form for the regulator:

Rk(p
2) = Zkp

2r(y) (56)

with y = p2/k2. We will also use the shorthand notations

r′ =
dr(y)

dy
r′′ =

d2r(y)

dy2

In particular we will use the regulator thus

r(y) = α

(
1− y

y

)
θ(1− y) (57)
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Flow equation O(N) LPA’

In this way, we can easily put the flow equation for η in a dimensionless
form:

ηk = 4Adρ̃0,k (∂
2
ρ̃ρ̃Ṽk(ρ̃0,k))

2md
22(2ρ̃0,k∂

2
ρ̃ρ̃Ṽk(ρ̃0,k), ηk) (58)

where we have defined the threshold function

md
22(w, η) =

∫ ∞

0
dy yd/2

1 + r + yr′

P (w)2P (0)2
{
y(ηr + 2yr′)(1 + r + yr′)×

×
[

1

P (w)
+

1

P (0)

]
− ηr − (η + 4)yr′ − 2y2r′′

}
(59)

and
P (w) = y(1 + r) + w
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Flow equation O(N) LPA’

In the particular choice we made for the regulator we get:

md
22(w, η) =

∫ 1

0
dy yd/2

(1− α)α

P (w)2P (0)2

{ [
η(1− y)− 2

]
×

eta3× (1− α)

[
1

P (w)
+

1

P (0)

]
+ η

}
(60)
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Quark meson model



MF vs FRG finite pion mass
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Mψ as a function of T MF vs FRG finite pion mass
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Mψ as a function of µ MF vs FRG finite pion mass
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Phase diagram MF vs FRG finite pion mass
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Mψ as a function of T , MF vs FRG chiral limit
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Mψ as a function of µ MF vs FRG chiral limit
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Phase diagram MF vs FRG chiral limit
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Scaling of ρ̃0,k in the QM model
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Finite quark mass

▶ A mass term for fermions would be:

Lm = −m2Ψ̄Ψ . (61)

▶ In order to mimic the presence of a finite current quark mass we use a term

Lm = −cσ (62)

▶ The total Lagrangian then reads:

LEQM = ψ̄(γµ∂
µ + h(σ + iγ5τ⃗ · π⃗))ψ +

1

2
(∂µΦ)

2 + U(Φ2)− cσ . (63)

▶ The O(4) symmetry is also explicitly broken by the term −cσ, and the
spontaneous symmetry-breaking pattern is not exact.

▶ Pions turn into massive pseudo-Goldstone mesons, acquiring a finite mass given by

M2
π =

∂2
(
U(Φ2)− cσ

)
∂π2

∣∣∣
⟨σ⟩=fπ

=
c

fπ
. (64)
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Finite quark mass

▶ ⟨σ⟩ never truly vanishes and the O(4) symmetry is never restored, even though it
can be considered approximately restored when ⟨σ⟩ ≪ fπ.

▶ Phase diagram:

Crossover;
1st-order phase
transition;
critical endpoint.
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Flull QM LPA flow equation

∂tUt(σ) =
1

8π2

∫ ∞

0
d q q4

{
∂tr

B
t (q)

[
3

Ek,π(q)
coth

(
Ek,π(q)

2T

)
+

1

Ek,σ(q)
coth

(
Ek,σ(q)

2T

)]

−2Nc
(
1 + rFt (x)

)
∂tr

F
t (x)

1

Ek,Ψ(q)

1− nF

(
Ek,Ψ(q) + µ

T

)
− nF

(
Ek,Ψ(q)− µ

T

)} .

For the Litim-litim combination we get:

∂tUk(σ) = −
k5

12π2


[

3

Ek,π
coth

(
Ek,π

2T

)
+

1

Ek,σ
coth

(
Ek,σ

2T

)]

−4Nc
1

Ek,Ψ

[
tanh

(
Ek,ψ − µ

2T

)
+ tanh

(
Ek,ψ + µ

2T

)] , (65)
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Quark-Meson model regulator dependency: mean-field

▶ We start from mean-field ⇒ phase diagram is regulator-independent.

▶ We introduce the following rescaling transformation:

σ →
√
Ncσ Uk(σ) → NcUk(σ) uk(σ) →

√
Ncuk(σ)

▶ And get the following rescaled flow equation:

∂tuk(σ) +
1√
Nc

∂ukfk(σ, uk(σ))u
′
k(σ) =

1√
Nc

∂σgk(u
′
k(σ)) + ∂σSk(σ)

▶ We can now take the Nc → ∞ limit such that only the source term contributes

∂tuk(σ) = ∂σSk(σ)
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Quark-Meson model regulator dependence: Mean-Field
Approximation



Quark-Meson model regulator dependence MF

▶ We start from Mean-Field (MF) Approximation ⇒ No feedback of the effective potential
in the Wetterich flow equation (equivalent to Nc → ∞).

▶ Only the source term contributes

∂tuk(σ) = ∂σSk(σ)

▶ We use RG-consistency to determine the proper initial condition.

▶ As expected, the MF phase diagram is regulator independent for sufficiently large Λ.
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Quark-Meson model regulator dependence: mean field

▶ We can consider a different regulator for fermions: Fermi-surface regulator

Rk,F (p, µ) = (−µ−|p⃗|)r−P−γ0 + (−µ+|p⃗|)r+P+γ0

with

r± = r(x±) x±k
2 = (−µ±|p⃗|)2 P± =

1

2i

(
iγ0 ±

/⃗p

|p⃗|

)
γ0

such that the kinetic operator of the fermionic action can be written as

T = C−P−γ0 + C+P+γ0 + hσ

C∓ = ipo +
(
−µ∓|p⃗|

)
▶ the regularized inverse propagator

is

T +Rk,F = C̄−P−γ0 + C̄+P+γ0 + hσ

C̄± = ipo +
(
−µ∓|p⃗|

)
(1 + r∓)

[9] J. Braun et al., Renormalization Group Studies of Dense Relativistic Systems (2020)
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Quark-Meson model regulator dependence: mean field

▶ The inversion of the previous expression leads to:

(T +Rk,F )
−1 =

C̄−P−γ0 + C̄+P+γ0 + hσ

C̄+C̄− + (hσ)2

▶ After some manipulation we obtain the following flow equation

∂tuk(σ) = −∂t

4h2σ

∫
d3p

(2π)3
1

2Ẽ

1− nf

(
Ẽ − µ̃

T

)
− nf

(
Ẽ + µ̃

T

)


with

Ẽ =

√(
ω+ − ω−

2

)2

+ (hσ)2 µ̃ =
ω+ + ω−

2
ω± = (µ∓p)(1+r±)

▶ How do we solve this? ⇒ µ-dependent initial condition.
Solve the mean-field flow equation ⇒ RG-consistency.
Integrate mean-field flow equation ⇒ fixing infrared physics.
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Quark-Meson model regulator dependence: mean field

▶ RG consistency ⇒ Γ independent of cut-off choice.

Λ
dΓ

dΛ
= 0

▶ RG consistency can be used to determine an µ-dependent initial
condition for the flow equation.
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Quark-Meson model regulator dependence: mean field

▶ ”Analytical” solution ⇒ perform explicit t integration of equation 66.

uUV (σ, µ)− uIR(σ, T, µ) = K(σ, T, µ, k = Λ)−K(σ, T, µ, k = 0)

K(σ, T, µ, k) = −4h2σ

∫
d3p

(2π)3
1

2Ẽ

1− nf

(
Ẽ − µ̃

T

)
− nf

(
Ẽ + µ̃

T

)
▶ Now we suppose that the initial condition has the following shape:

uUV (σ, µ) = m(µ)σ + λ(µ)σ3

▶ Assuming the knowledge at T = 0 of

σ0(µ) and M2
σ(σ0(µ), µ)

▶ we can determine the value of m(µ) and λ(µ) using

uIR(σ0(µ), µ) = 0 u′IR(σ0(µ), µ) =M2
σ(σ0(µ), µ)
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Local enclosure of the potential
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Critical temperature
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Thermodynamic geometry



Thermodynamic geometry: the concept

▶ An equilibrium state for a thermodynamic system is characterized by the pair
(β = 1/T , γ = −µ/T ).

▶ Key idea: we consider the (β, γ)-space as a two-dimensional manifold.

▶ We introduce a distance in this space

dl2 = gββdβdβ + 2gβγdβdγ + gγγdγdγ , (66)

where the metric tensor is

gij =
∂2 logZ
∂βi∂βj

=
∂2ϕ

∂βi∂βj
≡ ϕ,ij , (67)

with ϕ = βP , P = −Ω, Ω denotes the grand canonical thermodynamic potential
density, β1 = β and β2 = γ.

▶ Given these, we can construct the metric determinant

g = gββgγγ − g2βγ (68)
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Thermodynamic geometry: the concept

▶ Thermodynamic stability requires that gββ > 0, g > 0 ⇒ dℓ2 > 0.

▶ g = 0 corresponds to a phase boundary.

▶ gij measures fluctuations of the observables to βi, βj :

V ϕ,ββ = ⟨(U − ⟨U⟩)2⟩ , (69)

V ϕ,βγ = ⟨(U − ⟨U⟩)⟩⟨(N − ⟨N⟩)⟩ , (70)

V ϕ,γγ = ⟨(N − ⟨N⟩)2⟩ , (71)

with U internal energy, N particle number, V volume of the system.

▶ One can define the Riemann tensor as

Riklm =
∂Γikm
∂xl

− ∂Γikl
∂xm

+ ΓinlΓ
n
km − ΓinmΓnkl, (72)

with the Christoffel symbols

Γikl =
1

2
gim

(
∂gmk
∂xl

+
∂gil
∂xk

− ∂gkl
∂xm

)
. (73)

▶ Ricci tensor Rij = Rkikj , and scalar curvature R = Rii. Within thermodynamic
geometry, R is called the thermodynamic curvature.
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Thermodynamic geometry: the concept

▶ For our two-dimensional manifold there is only one independent component of the
Riemann tensor R = 2R1212/g, so we have:

R = − 1

2 g2

∣∣∣∣∣∣∣
ϕ,ββ ϕ,βγ ϕ,γγ
ϕ,βββ ϕ,ββγ ϕ,βγγ
ϕ,ββγ ϕ,βγγ ϕ,γγγ

∣∣∣∣∣∣∣ , (74)

▶ The curvature diverges on a phase boundary g → 0.

▶ R depends on the second- and third-order moments of the thermodynamic
variables ⇒information about the fluctuation of the physical quantities.

▶ Close to a second-order phase transition |R| ∝ ξ3 ⇒ information on the correlation
volume.

▶ R can convey details about the nature of the interaction:

R > 0 indicates an attractive interaction;
R < 0 corresponds to a repulsive one.

▶ These interactions include also the statistical attraction and repulsion in phase
space :

1. R < 0 for an ideal Fermi gas;
2. R > 0 for an ideal Bose Gas;
3. R = 0 for an ideal classical gas.
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Thermodynamic geometry: FRG setup

▶ Thermodynamic quantities are extracted from the grand canonical thermodynamic
potential:

Ω(T, µ) ≡ Uk=0(σ = σ0;T, µ)− cσ0 . (75)

▶ The solution u(σ;T, µ) has to be integrated in the σ variable ⇒ the effective
potential defined up to an arbitrary σ-independent but T and µ-dependent
integration constant

U(σ;T, µ) =

∫ σ

σ̄

dσ′u(σ;T, µ) + U(σ̄;T, µ) , (76)

where σ̄ ∈ [0, σmax ] is an arbitrary grid point.

▶ In order to obtain the correct thermodynamic properties, we calculate this constant
using the flow equation for the effective potential ∂tUk(σ = σ̄).

▶ We choose a quartic potential for the initial condition UΛ(σ) =
m2

UV
2
σ2 + λUV

4
σ4.

▶ The finite cutoff Λ cuts out thermal modes with 2πT > Λ

▶ One expects the fermionic degrees of freedom to be relevant at higher
temperature, thus

UΛ(σ) → UΛ(σ) + U∞
Λ (σ) , U∞

Λ (σ) =

∫ Λ

∞
Sk(σ)dk (77)
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QM model Thermodynamics

▶ The pressure is given by

P (T, µ) = −Ω(T, µ) + Ω(0, 0) , (78)

▶ The entropy density is defined as

s =
∂P (T, µ)

∂T
. (79)

▶ In the QM model, at high temperature the main contribution to the pressure
comes from the (nearly) massless quarks, while both the pions and the sigma
bosons are massive due to the (partial) restoration of chiral symmetry and so
effectively decouple. ⇒ SB limit.
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QM model Thermodynamics

▶ Importance of the UV correction for the correct calculation of
thermodynamic quantities at high temperatures.
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Thermodynamic geometry: results, finite pion mass

▶ g(T = Tc) decreases as we get closer to the critical point;

▶ FRG reaches criticality at lower chemical potentials then MF.

Figure: Determinant of the thermodynamic metric, g, versus µ computed at the
pseudo-critical temperature T = Tc

.
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Thermodynamic geometry: results, finite pion mass

▶ R exhibits a peak in the around the pseudo-critical temperature;

▶ The inclusion of fluctuation lowers the magnitude of the peak;

▶ Both MF and FRG show a positive peak as criticality is approached;

▶ Multiple peak structure due to higher order momenta.
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Thermodynamic geometry: results, chiral limit

▶ Chiral limit is challenging ⇒ we artificially lower c;

▶ Both MF and FRG show a peak around the critical temperature which becomes
sharper towards the chiral limit;

▶ For Both MF and FRG the peak is positive ⇒ Statistical attraction;

▶ Fluctuations lower the magnitude of the peak;

▶ Qualitative behavior of R independent on the approximation.
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Kurganov and Tadmor scheme



Kurganov and Tadmore scheme

Finite volume schemes are methods for solving non-linear advection–diffusion
equations. In particular conservation laws are expressed in the form

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0 (80)

while convection-diffusion equations are represented by

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) =

∂

∂x
Q[u(x, t), ux(x, t)] (81)

where:

▶ u(x, t) = (u1(x, t), · · · , uN (x, t)) is an N -component vector of conserved
quantities in the d spatial variables x = (x1, · · · , xd);

▶ f(u) = (f1, · · · , fd) is the advection flux;

▶ Q(u, ux), or in general Q(u,∇xu) = (Q1, · · · , Qd), is a diffusion flux.
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Kurganov and Tadmor scheme

The computational domain V is discretized in the so called control volumes
Ix × [tn, tn +∆t], where |Ix| = |I|/Nx is the spatial control volume of width ∆x
centered around the point x obtained sampling I with Nx grid points, and tn is
the n-th point in which T is discretized.
The next step to build a FVM is to consider the average ū of the solution u in the
interval Ix:

ū(x, t) =
1

|Ix|

∫
Ix

u(ξ, t) dξ, Ix =

{
ξ : |ξ − x| ≤ ∆x

2

}
. (82)

Once we defined the averages, we discretize the partial differential equations,
transforming them into algebraic equations by integrating them over the control
volume Ix × [tn, tn +∆t] and we get the exact equation:

ū(x, tn +∆t) = ū(x, tn)− 1

∆x

∫ tn+∆t

tn
f

(
u

(
x+

∆x

2
, τ

))
dτ

−
∫ tn+∆t

tn
f

(
u

(
x− ∆x

2
, τ

))
dτ

 . (83)
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Kurganov and Tadmor scheme

▶ Sampling at x = xj , at each time step tn we obtain the algebraic system for
ūn+1
j = ū(xj , t

n +∆t), assuming that we already know the solution at the
previous time step ūnj = ū(xj , t

n).

▶ An evaluation of the fluxes at the volume interfaces is needed.

▶ We will denote with xj the grid points of the mesh, located in the middle of the
control interval, and with xj+1/2 = xj +∆x/2 the cell interfaces where the fluxes
have to be evaluated.

▶ Since in FVM the information on the solution of the PDE is stored in the cell
averages, one has no access to the value of the solution at the cell interface, which
we will label as ūnj+1/2 = ū(xj +∆x/2, tn).

▶ Thus, in this case a reconstruction of ūnj+1/2 is needed, as a function of the cell
averages ūnj . The way in which this reconstruction is performed differentiates the
various FVM.

▶ Central schemes are based on sampling at the interfacing breakpoints, x = xj±1/2,

ūn+1
j+1/2 = ūnj+1/2 −

1

∆x

[∫ t+∆t

t

f(uj+1, τ)dτ −
∫ t+∆t

t

f(uj , τ)dτ

]
. (84)
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Kurganov and Tadmor scheme

Kurganov and Tadmor scheme
The main idea in the Kurganov and Tadmor central scheme is to average
the nonsmooth parts of the computed solution over smaller cells of
variable size.
We need to estimate the local speed of propagation at the cell boundaries:
the upper bound is denoted by anj+1/2 and given by

anj+1/2 = max
u∈C(u−

j+1/2
,u+
j+1/2

)
ρ

(
∂f

∂u
(u)

)
(85)
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Kurganov and Tadmor scheme

where

▶ ρ denotes the spectral radius of the flux Jacobian,

▶ u−j+1/2 = unj+1 − ∆x
2 (ux)

n
j+1 and u+j+1/2 = unj +

∆x
2 (ux)

n
j are the

correspondent left and right intermediate values of û(x, t) at
xj+1/2 = xj +∆x/2,

▶ C(u−j+1/2, u
+
j+1/2) is a curve in phase space connecting u−j+1/2 and

u+j+1/2.

The derivatives are reconstructed through the minmod limiter :

(ux)
n
j = minmod

(
ūnj − ūnj−1

∆x
,
ūnj+1 − ūnj

∆x

)
, (86)

with minmod(a, b) = 1/2[sgn(a) + sgn(b)] ·min(|a|, |b|)
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Kurganov and Tadmor scheme

Kurganov and Tadmor scheme is then constructed in the following steps.

▶ We assume we have already computed the piecewise-linear solution at
time level tn, based on the cell averages ūnj

u(x, tn) ≈ û(x, tn) =
∑
j

ūnj + (ux)
n
j (x− xj)I[xj−1/2, xj+1/2] (87)

▶ We compute the new cell averages wn+1
j+1/2 and wn+1

j at tn+1 in the
following way:

wn+1
j+1/2 =

1

∆xj+1/2

∫ xn
j+1/2,r

xn
j+1/2,l

u(ξ, tn+1) =
unj + unj+1

2
+
∆x− anj+1/2∆t

4
×

((ux)
n
j − (ux)

n
j+1)−

1

2anj+1/2

[f(u
n+1/2
j+1/2,r)− f(u

n+1/2
j+1/2,l)] (88)
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Kurganov and Tadmor scheme

wn+1
j =

1

∆xj

∫ xn
j+1/2,l

xn
j−1/2,r

u(ξ, tn+1) = unj +
∆t

2
(anj−1/2 − anj+1/2)(ux)

n
j

− λ

1− λ(anj−1/2 + anj+1/2)
[f(u

n+1/2
j+1/2,r)− f(u

n+1/2
j+1/2,l)] (89)

with

xnj+1/2,r = xj+1/2 + anj+1/2∆t xnj+1/2,l = xj+1/2 − anj+1/2∆t (90)

∆xj+1/2 = xnj+1/2,r − xnj+1/2,l ∆xj = xnj+1/2,l − xnj−1/2,r (91)
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Kurganov and Tadmor scheme

u
n+1/2
j+1/2,l = unj+1/2,l −

∆t

2
f(unj+1/2,l)x (92)

unj+1/2,l = unj +∆x(ux)
n
j

(
1

2
− λanj+1/2

)
(93)

u
n+1/2
j+1/2,r = unj+1/2,r −

∆t

2
f(unj+1/2,r)x (94)

unj+1/2,r = unj −∆x(ux)
n
j+1

(
1

2
− λanj+1/2

)
(95)

λ =
∆t

∆x
(96)

Fabrizio Murgana Non-perturbative insights into QCD via FRG 9 June 2025 89 / 16



Kurganov and Tadmor scheme

▶ We consider the piecewise-linear reconstruction over the nonuniform cells at
t = tn+1

ŵ(x, tn+1) =
∑
j

{[wn+1
j+1/2 + (ux)

n+1
j+1/2(x− xj+1/2)]I[xn

j+1/2,l
,xn

j+1/2,r
]

+ wn+1
j I[xn

j−1/2,r
,xn

j+1/2,l
]} (97)

▶ We project its averages back onto the original uniform grid.

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

ŵ(ξ, tn+1)dξ = λanj−1/2w
n+1
j−1/2 + [1− λ(anj−1/2 + anj+1/2)]w

n+1
j

+ λanj+1/2w
n+1
j+1/2 +

∆x

2
[(λanj−1/2)

2(ux)
n+1
j−1/2 − (λanj+1/2)

2(ux)
n+1
j+1/2] (98)
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Kurganov and Tadmor scheme
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Kurganov and Tadmor scheme

Semi-discrete reduction: ∆t→ 0,λ→ 0.

d

dt
uj(t) = −

(f(u+j+1/2(t) + f(u−j+1/2(t))− (f(u+j−1/2(t) + f(u−j−1/2(t))

2∆x

+
1

2∆x
{aj+1/2[u

+
j+1/2(t)−u

−
j+1/2(t)]−aj−1/2[u

+
j−1/2(t)−u

−
j−1/2(t)]} (99)

In this reduction the maximal local speed aj+1/2(t) takes the form

anj+1/2(t) = max

{
ρ

(
∂f

∂u
(u−j+1/2(t))

)
, ρ

(
∂f

∂u
(u+j+1/2(t))

)}
(100)
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Kurganov and Tadmor scheme

Conservative form:

d

dt
uj(t) = −

Hj+1/2(t)−Hj−1/2(t)

∆x
(101)

with the numerical flux

Hj+1/2(t) =
f(u+j+1/2(t)) + f(u−j+1/2(t))

2
−
aj+1/2(t)

2
[u+j+1/2(t)−u

−
j+1/2(t)]

(102)
Kurganov and Tadmor second-order semi-discrete scheme, can be easily
applied to one-dimensional convection–diffusion equations

d

dt
uj(t) = −

Hj+1/2(t)−Hj−1/2(t)

∆x
+
Pj+1/2(t)− Pj−1/2(t)

∆x
(103)
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Kurganov and Tadmor scheme

with Pj+1/2(t) is a reasonable approximation of the diffusion flux

Pj+1/2(t) =
1

2

[
Q

(
uj(t),

uj+1(t)− uj(t)

∆x

)
+Q

(
uj+1(t),

uj+1(t)− uj(t)

∆x

)]

Key features of Kurganov and Tadmor scheme

▶ semplicity, since no spectral decomposition of the flux f is needed;

▶ second order precision in ∆x;

▶ sharp resolution of discontinuities;

▶ stability, since semi-discrete formulation allows to treat easily small ∆t.
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Kurganov and Tadmore scheme

Example 1: linear steady shock.
Let us consider the following problem

f(u) = 0 (104)

ut = 0 (105)

subject to the discontinuous initial data

u(x, 0) =

{
1 −0.5 < x < 0.5
0 otherwise

(106)
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Kurganov and Tadmor scheme
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Kurganov and Tadmore scheme

Example 2: inviscid Burgers’ equation
Let us consider the following problem

f(u) =
u2

2
(107)

ut +

(
u2

2

)
x

= 0 (108)

with a smooth periodic initial data

u(x, 0) = 0.5 + sinx. (109)
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Kurganov and Tadmor scheme

-0.5

 0

 0.5

 1

 1.5

 0  1  2  3  4  5  6

u(
x)

x

Fd3
Exact

Fabrizio Murgana Non-perturbative insights into QCD via FRG 9 June 2025 98 / 16



O(N) Model



O(N) Model

The theory describes N scalar fields ϕa(x) with a = 1, · · · , N .
The associated bare action at the cutoff scale k = Λ is

Sk=Λ[ ϕ⃗ ] =

∫
ddx

{
1

2
(∂µϕa)

2 + Vk=Λ(ρ)

}

Vk=Λ(ρ) =
λ

4
(ρ− ρ0)

2
, ρ =

1

2
ϕaϕa , σ =

√
2ρ

The model exhibits a spontaneous symmetry breaking of the O(N)-group down
to O(N − 1), which is restored at sufficiently high temperature via a second-order
phase transition.

Motivation:

▶ Universality: close to phase transition UV details do not count ⇒ chiral
phase transition in 2-flavour QCD;

▶ Easy to solve, well known results, good framework for numerical tests.

[4] Gell-Mann M and Levy M 1960 Nuovo Cimento 16 705–26.
[5] Adrian Koenigstein, Martin J. Steil, Nicolas Wink, Eduardo Grossi, Jens Braun, Michael Buballa, and Dirk H. Rischke,
Numerical fluid dynamics for FRG flow equations: Zero-dimensional QFTs as numerical test cases - Part I: The O(N) model.
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O(N) model: flow equation in the Local Potential
Approximation (LPA)



O(N) model: LPA flow equation

Within the LPA, one obtains the flow equation for the effective potential:

∂tVk(t, σ) = −Ad k
d+2

(
N − 1

k2 + 1
σ∂σVk(t, σ)

+
1

k2 + ∂2σσVk(t, σ)

)
We introduce the derivative of the potential as new variable

u(t, σ) = ∂σVk(t, σ), u′(t, σ) = ∂σu(t, σ)

We can now introduce the advection and the diffusion fluxes

f(t, σ, u) = Ad k
d+2 N − 1

k2 + 1
σu(t, σ)

g(t, u′) = −Ad k
d+2 1

k2 + u′(t, σ)

Taking the derivative of the flow equation with respect to σ we obtain

∂tu(t, σ) + ∂σf(t, σ, u) = ∂σg(t, u
′)

which is an advection-diffusion equation for u(t, σ).

[5] Adrian Koenigstein, Martin J. Steil, Nicolas Wink, Eduardo Grossi, Jens Braun, Michael Buballa, and Dirk H. Rischke,
Numerical fluid dynamics for FRG flow equations: Zero-dimensional QFTs as numerical test cases - Part I: The O(N) model.
[6]E. Grossi and N. Wink (2019), arXiv:1903.09503.
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O(N) model: LPA flow equation

Advection contribution

∂tu(t, σ) + ∂uf(t, σ, u) u
′(t, σ) + ∂σf(t, σ, u) = 0

Advection coefficient

∂uf(t, σ, u) = −Ad k
d+2 N − 1

σ[k2 + 1
σu(t, σ)]

2
< 0 ∀σ > 0

Diffusion contribution:

∂tu(t, σ) = ∂u′g(t, u′) u′′(t, σ)

Diffusion coefficient

∂u′g(t, σ′) = Ad k
d+2 1

[k2 + u′(t, σ)]2
> 0

We used Kurganov-Tadmor scheme (FV scheme, second order in ∆x... [8]).

[7] Alexander Kurganov and Eitan Tadmor, Journal of Computational Physics 160, 241 (2000).
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Figure: Effective potential derivative u(t, σ) at t = 1 for N = 3 in LPA.
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O(N) model: LPA flow equation
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Figure: Effective potential derivative u(t, σ) at t = 2 for N = 3 in LPA.
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O(N) model: LPA flow equation
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Figure: Effective potential derivative u(t, σ) at t = 3 for N = 3 in LPA.
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O(N) model: LPA flow equation
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Figure: Effective potential Vk(σ) at t = 1 for N = 3 in LPA.
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O(N) model: LPA flow equation
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Figure: Effective potential Vk(σ) at t = 2 for N = 3 in LPA.
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O(N) model: LPA flow equation
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Figure: Effective potential Vk(σ) at t = 3 for N = 3 in LPA.
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O(N) model: critical behavior



O(N) model: critical ρ0|t=0

▶ Dimensional reduction phenomenon: close to criticality we can use
the T = 0 d = 3 flow equations.

σ0|IR is the order parameter, ρ0|t=0 plays the role of the temperature :

▶ if ρ0|t=0 > ρc0|t=0 (T < Tc) ⇒ broken phase σ0|IR > 0;

▶ if ρ0|t=0 < ρc0|t=0 (T > Tc) ⇒ symmetric phase σ0|IR = 0.

We fix λ to an arbitrary value λ = 0.5 and adjust ρ0|t=0 at t = 0 in order
to find the scaling solution.

▶ broken phase (ρ0|t=0 > ρc0|t=0): ρ0,k → ρ0|IR > 0
⇒ ρ̃0,k =

ρ0
k → +∞ as k → 0;

▶ symmetric phase (ρ0|t=0 < ρc0|t=0): ρ0,k → ρ0|IR = 0
⇒ ρ̃0,k =

ρ0
k → 0 as k → 0;
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O(N) model: critical ρ0|t=0
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O(N) model: critical exponent ν

Critical exponent ν
The correlation length ξ diverges close to criticality as

ξ(ρ0|t=0) ∼ (
∣∣ρ0|t=0 − ρc0|t=0

∣∣)−ν
We consider the renormalized mass m2

m2 = lim
k→0

u′(σ = 0, k) = lim
k→0

V ′′(σ = 0, k) =
1

ξ2

Thus
m2 ∼ (

∣∣ρ0|t=0 − ρc0|t=0

∣∣)2ν
We can obtain ν from

lnm2 = 2ν ln(
∣∣ρ0|t=0 − ρc0|t=0

∣∣) + const
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O(N) model: critical exponent ν
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Figure: Critical exponent ν for N = 3 in LPA.
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O(N) model: critical exponent β

Critical exponent β
Close to criticality, the order parameter σ0|IR is described by the following
behaviour

σ0|IR =

{
0 ρ0|t=0 < ρc0|t=0

∼ (ρ0|t=0 − ρc0|t=0)
β ρ0|t=0 > ρc0|t=0

So we can extract β from

lnσ0|IR = β ln(ρ0|t=0 − ρc0|t=0) + const
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O(N) model: critical exponent β
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Figure: Critical exponent β for N = 3 in LPA.
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O(N) model: results critical exponents
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