

CYGNO status and plans Feb 2025

U

European Research Council Established by the European Commi

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

Davide Pinci, INFN - Roma

LIME: RUNs 1-5

	Time slot	Number of pictures	Event rate	Number of event
RUN 1: No-shielding	3 Nov 2022 - 15 Dec 2022	4 10 ⁵	35 Hz	4 10 ⁶
RUN 2: 4 cm Cu shielding	15 Feb 2023 - 15 March 2023	4.5 10 ⁵	3.5 Hz	5 10 ⁵
RUN 3: 10 cm Cu shielding	5 May 2023 - 16 Nov 2023	1.6 10 ⁶	1.5 Hz	7.3 10 ⁵
RUN 4: 10 cm Cu + 40 cm water shielding	30 Nov 2023 - 31 March 2024	2 10 ⁶	1.0 Hz	6 10 ⁵
RUN 5: 10 cm Cu shielding (neutron flux measurements)	17 May 2024 - 1 Dec 2024	12 10 ⁶	1.5 Hz	5.4 10 ⁶
Special data takings				
AmBe for Nuclear Recoils	2-4 Aug 2023	2 10 ⁵	0.04 Hz of NR	2.5 10 ³ NR
²⁴¹ Am for Electron Recoils	7-16 Nov 2023	7 10 ⁵	50 Hz	106
AmBe for Nuclear Recoils	5-15 Dec 2024	6 10 ⁵	0.04 Hz of NR	7.0 10 ³ NR

LIME STATUS

LIME was shut down on the 5th of May (Ei fu);

sources

- new camera + lens;
- gas filters lifetime and efficiency;
- gas mixture quality check;
- data taking with the 83Rb calibration source;

Description	Group	25-11-24	02-12-24	09-12-24	16-12-24	23-12-24	30-12-24	06-01-25	13-01-25	20-01-25	27-01-25	03-02-25	10-02-25	17-02-25	24-02-25	03-03-25	10-03-25	17-03-25	24-03-25	31-03-25	07-04-25	14-04-25	21-04-25	28-04-25
		1-12-24	08-12-24	15-12-24	22-12-24	29-12-24	5-1-25	12-01-25	19-01-25	26-1-25	02-02-25	09-02-25	16-2-25	23-02-25	02-03-25	9-3-25	16-03-25	23-03-25	30-3-25	06-04-25	13-4-25	20-04-25	27-4-25	04-05-25
End of RUN5	CYGNO Collab.																							
AmBe Source [low gain]	CYGNO Collab.																							
AmBe Source [high gain]	RM1																							
Pedestal studies	RM1																							
Gas Mixture Recovery	RM1																							
Scans in z, VGEM, VDRIFT	LNF, RM3																							
Test of new optical system	GSSI																							
Filters Tests	RM1																							
Radon Monitor	RM1																							
83Rb Source	GSSI																							
NID	GSSI																							

A Negative Ion Drift run take before the closure;

After 27 months of operation, 5 Scientific Runs, 2 AmBe campaigns and extensive tests with Eu, Ba and Am

From January 2025 we have taken technical runs intended as pre-commissioning of sub-parts of CYGNO04:

LIME Technical-Runs: new optics system

- New camera+lens system is definitely better in terms of noise RMS (and also granularity)
- Almost factor 2 in RMS value
- We demonstrated that the **energy** threshold can be 15-20% less than old one in the same configuration

LIME Technical-Runs: gas system study

By means of a CF₄ analyser and calibrated pre-mix bottles, we cross-checked that the gas-mixture percentages were correct within 1%;

A study on filters effect, showed that:

- too low oxygen content, makes gas mixture unstable;
- **high humidity** has impact on the light yield;

Current filter setup was able to keep humidity under control on LIME

No need to modify the gas recirculation system

LIME Technical-Runs: test with Rb and ⁸³Kr

camera

It allows to test **uniformly** the **sensitive volume** and to study and **calibrate** camera and **PMT** in the few keV region

Rb has an half life of 3 months

Produces 83Kr that emits 32 keV and 9.4 keV

photons 155 ns apart with an half life

of about 2 hours

By Internal Conversion, these will produce electrons

The 9.4 keV photon provides mainly a 7.5 electron (90%) and electrons of 9.1 keV (10%), while the other makes 17.8 keV (25%) and around 30 keV (75%)

Main LIME performance: 3D and directionality NR

and direction and head-tail are reconstructed for alpha particles within LIME volume

By merging together info from camera and PMT with a multi-variate Bayesian fit procedure, the 3D position

David Marques (GSSI) - PhD thesis

Main LIME performance: z reconstruction

To develop tools to evaluate **the absolute z** of low energy ER, we use ⁵⁵Fe events;

Several variables spot-shape were studied and the most effective resulted ζ that takes into account the distribution of the hits within the spot.

Main LIME performance: 3D and directionality NR

and cathode) and ²³⁸U and ²³²Th chains as found in the GEM and Field Cage copper by Matthias

²³⁸U and ²³²Th chains

By reconstructing the **3D positions** of the alphas, we can **separate the contributions** of ²³²Rn chain (gas

Main LIME performance: z reconstruction ER

To test this tool on another energy value ER, we use the presence of **X-ray fluorescence** induced on the **GEM - copper** by the internal decays of the 210Bi; From the MC we expect these to produce 8-9 keV ER with a z exponentially decaying from the GEM side

To compare the results, we need to **digitize** and **reconstruct** the MC-Truth

Main LIME performance: z reconstruction NR

In the LIME data we observe a **background component** present only in runs with high **Radon contamination**;

Has a reconstructed energy of the order of **20-30 keV**ee;

Is reconstructed at very high Z, at the cathode level;

Main LIME performance: z reconstruction ER

First detection of radon progeny recoil tracks by MIMAC

Q. Riffard, D. Santos, O. Guillaudin, G. Bosson, O. Bourrion, J. Bouvier, T. Descombes, C. Fourel,

J.-F. Muraz, L. Lebreton - Show full author list

Published 30 June 2017 \cdot © 2017 IOP Publishing Ltd and Sissa Medialab

Journal of Instrumentation, Volume 12, June 2017

Citation Q. Riffard et al 2017 JINST 12 P06021

DOI 10.1088/1748-0221/12/06/P06021

MIMAC paper: 10.1088/1748-0221/12/06/P06021

Parent	T _{1/2}	Mode	$E^{\mathrm{kin}}_{lpha/eta\mathrm{max}}$	Daughter	$E_{ m recoil}^{ m kin}$	$E_{ m recoil}^{ m ioni}$					
			[MeV]		[keV]	[keVee]					
From ²²² Rn											
²²² Rn	3.8 days	α	5.489	²¹⁸ Po	100.8	38.23					
²¹⁸ Po	3.1 min	α	6.002	²¹⁴ Pb	112.3	43.90					
²¹⁴ Pb	27 min	β^{-}	1.024	²¹⁴ Bi	-	-					
²¹⁴ Bi	20 min	β^-	3.272	²¹⁴ Po	-	-					
²¹⁴ Po	164 µs	α	7.687	²¹⁰ Pb	146.5	58.78					
²¹⁰ Pb	22 years	β^-	0.064	²¹⁰ Bi	-	-					
²¹⁰ Bi	5 days	β-	1.163	²¹⁰ Po	-	-					
²¹⁰ Po	138 days	α	5.304	²⁰⁶ Pb (stable)	103.7	40.28					

If we consider a **10%-20% Quenching Factor** for **Pb** at the **150 keV** energy, we should expect 15-30 keV_{ee} The **identification** of this dangerous **background component** will allow to reject it

Directional experiments

Directional experiments can in principle probe cross sections below the neutrino floor with smaller **exposures** than conventional direct detection experiments

Gaseous TPC, provide the possibility of reconstruct the **track direction**;

Several groups, in the framework of the CYGNUS-TPC pseudo-collaboration, are developing this technology for a world wide Nuclear Recoil observatory network

r	
	Experiment
	DRIFT
	NEWAGE
	MIMAC
	D3
	CYGNO

"Going beyond the coherent neutrino-scattering wall will require direction-sensitive detectors. As long as convincing Dark Matter signals are found, such detectors will almost certainly be crucial to assessing the detailed nature as well as the astrophysical origin of Dark Matter. Anticipating this, detector R&D in this sphere has already begun"

Where	Amplification + Readout	Gas Pressure [mbar]	Volume [L]	Energy Thr [keV _{ee}]	Active Mass [gr]
UK	MWPC	55	800	20	33
Japan	1 GEM +muPIC	100	37	20	11.5
France	Micromegas	50	5.8	2	1.2
Australia	2 GEM + pixelated RO	1000	40	5	60
Italy	3 GEMs + sCMOS + PMT	900	400	1	600

NR directionality: current scenario

Direction-sensitive dark matter search with three-dimensional vector-type tracking in NEWAGE

LIME-like prototype operated at **0.1 bar CF**₄

Angle resolution 58° at 50-100 keV_{ee} energy range

(Note that the energy released from neutrons to C and F is 43% and 30% w.r.t. He)

Nuclear Inst. and Methods in Physics Research, A 1021 (2022) 165412

*µ*TPC-MIMAC detector

Dark Matter Directionality Detection performance of the Micromegas-based

10x10x5 cm³ prototype (**1% of LIME**) volume) operated at 0.05 bar CF₄ /CHF₃/ C_4H_{10}

Good resolution in reconstructing the F angle arriving perpendicular to readout plane

Main LIME performance: NR directionality

Room for large improvements with more sophisticated directional and rejection algorithms under development Higher statistics runs and different gain configurations tested in RUN5 AmBe tests

Best results for a O(0.1 kg) mass target

Main LIME performance: evaluation of DM sensitivity

An exercise was performed to evaluate from a with a subsample of 17 days, the DM sensitivity with a Bayesian fit procedure to estimate Credible Interval Limit (BAT toolkit used)

Even if **no solid background model** (LIME was not meant for this) is available so far:

- it can be used to **estimate** where the **exposure** of the detector can lead;
- what are the **parameters** we need to evaluate to get the final results
- -to get practice with the analysis tools;

Rita Antonietti (Università di Roma TRE) - PhD thesis

Papers

 $^{\circ}$

 \sim

Modeling the light response of an optically readout GEM based TPC for the CYGNO experiment

Fernando Dominques Amaro¹, Rita Antonietti^{2,3}, Elisabetta Baracchini^{4,5}, Luigi Benussi⁶, Stefano Bianco⁶, Roberto Campagnola⁶, Cesidio Capoccia⁶, Michele Caponero^{6,9}, Gianluca Cavoto^{7,8}, Igor Abritta Costa⁶, Antonio Croce⁶,

S

2

 \circ

S

Emiliano Dané⁶, Melba D'Astolfo^{4,5}, Giorgio Dho⁶, Flaminia Di Gi \sim D'Imperio⁷, Joaquim Marques Ferreira dos Santos¹, Davide Fiorina⁴ Herman Pessoa Lima Júnior^{4,5}, Ernesto Kemp¹⁰, Francesca Lewis⁸, C Robert Renz Marcelo Gregorio¹¹, David José Gaspar Marques^{4,5}, Lu Mazzitelli⁶, Alasdair Gregor McLean¹¹, Pietro Meloni^{2,3}, Andrea Me Rafael Antunes Nobrega¹², Igor Fonseca Pains¹², Matteo Pantalena Fabrizio Petrucci^{2,3}, Stefano Piacentini^{4,5}, Davide Piccolo⁶, Daniele Francesco Renga⁷, Rita Joana Cruz Roque¹, Filippo Rosatelli⁶, Ales Saviano^{6,13}, Federico Francesco Scamporlino⁸, Angelo Serrecchia⁸, P Curwen Spooner¹¹, Roberto Tesauro⁶, Sandro Tomassini⁶, Samuele 7 let

Bayesian network 3D event reconstruction in the Cygno optical TPC for dark matter direct detection

Fernando Domingues Amaro¹, Rita Antonietti^{2,3}, Elisabetta Baracchini^{4,5}, Luigi Benussi⁶, Stefano Bianco⁶, Francesco Borra^{2,3a}, Cesidio Capoccia⁶, Michele Caponero^{6,9}, Gianluca Cavoto^{7,8}, Igor Abritta Costa⁶, Antonio Croce⁶, Emiliano Dané⁶, Melba D'Astolfo^{4,5}, Giorgio Dho⁶, Flaminia Di Giambattista^{4,5}, Emanuele Di Marco⁷, Giulia D'Imperio⁷, Matteo Folcarelli^{7,8b}, Joaquim Marques Ferreira dos Santos¹, Davide Fiorina^{4,5}, Francesco Iacoangeli⁷, Zahoor Ul Islam^{4,5}, Herman Pessoa Lima Júnior^{4,5}, Ernesto Kemp¹⁰, Giovanni Maccarrone⁶, Rui Daniel Passos Mano¹, David José Gaspar Marques^{4,5c}, Luan Gomes Mattosinhos de Carvalho¹², Giovanni Mazzitelli⁶, Alasdair Gregor McLean¹¹, Pietro Meloni^{2,3}, Andrea Messina^{7,8}, Cristina Maria Bernardes Monteiro¹, Rafael Antunes Nobrega¹², Igor Fonseca Pains¹², Emiliano Paoletti⁶, Luciano Passamonti⁶, Fabrizio Petrucci^{2,3}, Stefano Piacentini^{4,5}, Davide Piccolo⁶, Daniele Pierluigi⁶, Davide Pinci⁷, Atul Prajapati^{4,5d}, Francesco Renga⁷, Rita Joana Cruz Roque¹, Filippo Rosatelli⁶, Alessandro Russo⁶, Giovanna Saviano^{6,13}, Pedro Alberto Oliveira Costa Silva¹, Neil John Curwen Spooner¹¹, Roberto Tesauro⁶, Sandro Tomassini⁶, Samuele Torelli^{4,5e}, and Donatella Tozzi^{7,8}

Two new papers based on the development made with LIME were just submitted to EPJC

