

13/06/2025 Matteo Franchini

TIM **ARCHITECTURES** THEORY & TECHNOLOGY

Istituto Nazionale di Fisica Nucleare

Where we are

- *** 21 Feb** —> Kick-off
- *** End of March** —> WP2+WP1 meeting discussed first theoretical problem and hamiltonian design
 - Only discussed Quantum Simulation of Collective Neutrino Oscillations by Roggero
- *** End of March** —> discussion on how to include Purcel Filters. Strong interest to use them.
 - Solution May —> WP2 meeting continues [Today update by Simona].
- *** May** —> test offline on Qibo for RFSoC Board DAQ. We need to understand clear tasks with ours/others board
 - **17 June h 11** —> meeting Carobene on board limits and applications
 - Sext → meeting with Alessio [Frascati] on their needs and status [fast!]
 - Sext → contact Ferrara for their board usage [after]
- *** Ongoing/Future** —> start studying Quantum ML and its application for QUARTET.
 - Solution Solutio

Neutrinos oscillations in dense environments

- * In high-density neutrino environments such as supernovae, neutron star mergers, or the early universe — neutrino flavor oscillations are significantly affected by neutrino-neutrino interactions.
- * Until now, approaches have relied on the mean-field approximation. However, to understand the role of **quantum correlations**, such **as entanglement**, an exact solution is necessary.
- * The Hamiltonian for a two flavors oscillation can be written as: $H = \sum_{k=1}^{N} \vec{b} \cdot \vec{\sigma}_{k} + \sum_{p < a}^{N} J_{pa} \vec{\sigma}_{p} \cdot \vec{\sigma}_{a}$ with $\vec{\sigma}_k = (\sigma_k^x, \sigma_k^y, \sigma_k^z)$
- * By now with only 2 flavors direct map to spin 1/2 degrees of freedom (qubits) and only one- and two-body interactions \Rightarrow only O(N2) terms
 - **Issue:** all-to-all interactions are difficult with reduced connectivity

Neutrinos oscillations in dense environments

- *** Fully exploit all-to-all interactions** in full analog simulations for simple geometries
- * perform **hybrid analog digital simulations** obtaining:
 - Set useful depth reductions if we could implement

$$U_{really-nice}(\vec{\theta}) = \exp(i\sum_{i,j}\theta_{ij}Z_iZ_j)$$

- study 3 flavour problem on quTrits
- * Idea: use the energy repulsion between 20, $|02\rangle$ and $|11\rangle$ to realize an effective ZZ interaction on the computational subspace; [Nature 460, 240-244 (2009)]
- * Ongoing work on this thread [more info by Simona]

Scheme to realize a single time-step simulation. Each double line is formed by $3\binom{N}{2}$ CNOT + $15\binom{N}{2}$ single qubit gates.

Needs to find other TH tasks for different chip design. Pederiva? Some ideas here in Bologna (Elisa). New master student involved.

RESOC Choughes

- * We have **ZCU111** with working Qibo/Qick: limited in performance (#channels, bandwidth, frequency, ...)
- * To understand exactly how can be used for qubit measurement in future. Sigle qubit test ok. 2-qubits?
- * Trying to obtain the maximum from our board, buying VF-100 board to access all ADC/DAC. Purchase ongoing (thanks Franco, Riccardo)
- * **More electronics** components needed to make a ~ independent measurement suite
 - RFSoC 4x2 (four 5 GSPS ADCs with 6 GHz RF input bandwidth and two 14-bit, 9.85 GSPS DACs)
 - See Mixers RF MM1-0212LS & splitter/combiners

* Needs interactions and feedbacks from Milano/Frascati/Ferrara

* **Brainstorming**!!!

(INFN Matteo Franchini

Guantum ML

- *** Bayesian inference** provides a robust approach to learning models for quantum systems, while preserving physical intuition about the processes involved.
- * Neural networks enable the characterisation of complex systems, at the expense of physical intuition.
- * Classical optimisation and learning algorithms can improve the performance of quantum sensors.

- * Optimize the objective, it is useful to have access to **exact gradients of** quantum circuits with respect to gate parameters
- * The strategies to estimate the gradients of measured observables directly from other measurement outcomes will be studied.

Status of purchases for 2025

Capitolo	Descrizione	Parziali (K-EUR)	
consumo	Consumo generale per materiale RF (connettori, filtri, cavi ecc.)	4.00	
consumo	2 mixer RF MM1-0212LS , 2 splitter/combiner RF ZX10-2-183-S+. per up/down conversion analogica	1.50	
interno	Missioni presso altri laboratori per sessione di lavoro congiunte e misure. Missioni per lavoro congiunto su scheda zcu208, software e misure sperimentali; test primo prototipo filtro di Purcell in lettura di >=1 qubit	6.00	5000
inventario	Scheda VF-100 (v. allegato) per accedere a tutti i canali ADC/DAC della scheda ZCU111	6.00	800(2000)
licenze-SW	Contributo CNAF per licenza ANSYS - per progettazione elementi 2d quali un filtro di Purcell.	2.50	?
Totale		0	

(INFN Matteo Franchini

requests-i_infn_bo_csn5_quartet

Preventivi 2026 and next

INFN-BO							
Capitolo	Descrizione	1st Y	2nd Y	3rd Y	Total		
		[k€]	[k€]	[k€]	[k€]		
Consumo	Consumo generale RF (filtri, con-	4	6	6	16		
	nettori ecc.)						
Consumo	2 mixer RF MM1-0212LS , 2 split-	1.5	0	0	2.5		
	ter/combiner RF						
Inventario	Scheda VF-100 per accedere a tutti	6	0	0	6		
	i canali ADC/DAC della scheda						
	ZCU111 (già presente in sezione)						
Inventario	Generatore RF TTi (10-6000 MHz)	0	6	0	6		
	per up/down conversion analogica						
Licenze-	Contributo CNAF per licenza An-	2.5	2.5	2.5	7.5		
SW	sys						
Missioni	Missioni presso altri laboratori per	6	6	6	18		
	sessione di lavoro congiunte e mis-						
	ure						
	Total	20	20.5	14.5	55		

Conclusion

- * Work is starting fast!
- * Many fronts are opening, we're involved on
 - \bigcirc theoretical side,
 - Chip Design&simulation and Filters,
- * Schedule bi-weekly meeting to stay in touch (and focused)
- * Finalise purchase and meeting with other collaboration units! (Software licences...)
- * IQIS 2025 Bologna 8-12 settembre https://events.unibo.it/iqis-2025/ registration

Next Meetings

*

*

