Muon TB2023 Analysis

Luca Davide Tacchini

University of Pavia

June 10, 2025

Muon TB2023 Analysis

Objective

We would like to reproduce this plot made for SPACAL:

Tot Scintillating Energy

We want to extract Muons from e⁺ runs (2.5° vertical angle and 1.5° horizontal angle). As an example, let us consider run 173 and 188, 80 GeV.

Preliminary cuts

The e^+ beam is contaminated by Muons and Pions. In order to select Muons, some cuts are applied:

- MCounter > 160
- 500 < Preshower < 640
- TOT S Energy $< 0.9 \cdot E_{beam}$

Tot S Energy (With Cuts)

Investigate Pions contamination

We want to eliminate Pions based on how they lose energy in the two external PMTs: PMT1 and PMT8.

Cumulative Intensity Map (S+C)

PMT8	PMT7	PMT6
PMT5		PMT4
PMT3	PMT2	PMT1

Investigate Pions contamination

We plotted the fraction of S energy lost in the two external PMTs with respect to the total S energy lost in the Calorimeter

Tot S Energy vs Fraction in SPMT1 and SPMT8

Additional cut

To eliminate events that have lost S energy above a fixed threshold in the two external PMTs (PMT1 and PMT8), without eliminating Muons that have radiated in the calorimeter. This additional cut was implemented: !((SPMT1+SPMT8)/(totSiPMSene+SPMTenergy)>0.03 (totSiPMSene+SPMTenergy)>10)

All cuts applied

Final distribution with all cuts:

Tot S Energy (With All Cuts)

Implemented methods:

To reproduce the plot from SPACAL with different approaches:

- Mean
- *MOP_S* value: using the MOP given by a Vavilov fit performed in a restricted area around the peak
- *MOP_L* value: using the MOP given by a Vavilov fit performed in a larger area (this takes into account the tail of the distribution)
- *MOP*₃ value: using the MOP given by the weighted sum of the three most populated bins of the histogram

Final PLOT

S Signal vs Beam Energy

Results and what to do:

- As in SPACAL, the mean value of the signal gets increased by $\simeq 50\%$ from 10 GeV to 100 GeV
- We want to add the 160 GeV energy value, it needs some corrections
- Implement error bars for MOP values