## **Pierre Auger Observatory** Status e risultati

### Antonella Castellina



### Activity since October 2024

2004



### End of 2024:

- ➡ Collaboration meeting in Malargüe : 10-15 November

- → UHECR Symposium in Malargüe : 17-21 November

#### 2025: an ICRC year

- ➡ 1 Collaboration meeting in Malargüe : 9-14 March
- ➡ 1 AugerItalia meeting : 3-5 February
- ➡ 1 Analysis meeting in L'Aquila: 19-23 May in L'Aquila

### 2000: Engineering Array

• 2008: ...end of construction of Auger

2022: start of data taking during AugerPrime deployment

• 2024: end of construction of

Data taking till > 2035



Finance Board meeting in Malargüe (M.Pallavicini, O.Cremonesi attending)

Celebration ceremony: extension of data taking for AugerPrime to 2035 [https://indico.nucleares.unam.mx/event/2235/]

→ ICRC (Geneva) : 15-24 July 44 contributions from Auger ! → Next Collaboration meeting in Malargüe : 16-21 November









## International agreements



1. First meeting of the starting collaboration held at CERN in 1995



A.Castellina

2. First International Agreement finalized and approved at UNESCO, Paris in 1998 Signed in Mendoza March 1999 (chaired by H.Schopper)

Pierre Auger Observatory

Agreement for the Organization, Management and Funding of the Pierre Auger Observatory

> Among Science Funding Agencies of Countries in the

> Pierre Auger Collaboration

Mendoza, Argentina March 15, 1999







# AugerPrime in the field

- WCD (UUB+SPMT) and SSD completed in summer 2023
- RD completed in December 2024
- UMD completion foreseen in mid 2025

- → 1939 UUB delivered and working out of the 2000 ordered (+34 to be sent and 27 non working)
- → 1480 SPMT working, only 31 missing (unaccessible regions).
- → 1478 SSD, 10 without PMT, 31 missing (unaccessible regions).







# AugerPrime in the field

- WCD (UUB+SPMT) and SSD completed in summer 2023
- RD completed in December 2024
- UMD completion foreseen in mid 2025

- → 1605 antennas in place, with corresponding electronics
- Few positions missing, due to forbidden access, 12 without digitizer
- Commissioning ongoing







# AugerPrime in the field

- WCD (UUB+SPMT) and SSD completed in summer 2023
- RD completed in December 2024
- UMD completion foreseen by 2025



- ➡ 100% of SD433 have UMDs
- ➡ 79% of SD750 have UMDs
  - 13 positions (39 modules) still to be deployed

- Second batch of scintillators arrived in Malargüe A.Castellina





FD in AugerPrime

| 24+3 telescopes | $\sigma_E/E \approx 8\%$    | $\sigma_{X_{max}} \le 20 \ g/c$ |
|-----------------|-----------------------------|---------------------------------|
|                 | $\Delta_{sys} \approx 15\%$ | $\Delta_{sys} \le 10 \ g/c$     |

- energy and X<sub>max</sub> scale provided to the Observatory
- most powerful evaluation of  $< X_{max} >$  and  $\sigma(X_{max})$  up to  $\sim 10^{19.5} \text{ eV}$
- stereo measurements to evaluate X<sub>max</sub> resolution and study the systematics
- Independent cross-checks for energy calibration with Radio  $< X_{max} >$  and  $\sigma(X_{max})$  from SD (DNN) and Radio

FD contribution in different analyses [µ excess with inclined and LE showers, up-going] showers, anomalous profiles, ...]



 $cm^2$  $cm^2$ 









#### Large PMTs (3 x 5000) [IT/Torino, FR/Orsay + help from CZ/Prague]

- ~100 PMT changed /year in the past, now doubled : ~balance between failure and recovery rate
- % discarded/year decreasing mainly thanks to new procedure to recover corroded pins
- Decreasing PMT stock

#### **Bottleneck : SensTech HVPS**

- ~120 Sens-Tech HV modules repaired in 2024, ~180 waiting to be repaired
- Purchase of new modules: quotation ~260 €/cad for at least 250 (5% decrease from 100 units)
- SensTech only provider problems with past purchases after pandemic









## Maintenance

### *CLF stably running* (After 2 campaigns in November 2024 and March 2025) *XLF stably running*

Raman Lidar and LA Lidar working fine CO LIDAR PC replaced end of March LL : spare HV/LV boards (CAEN A1738) will be provided by Catania group

Very active common working group of Calibration & Foundation



Absolute calibrations updated as of July 2024

X-Y scanner : differences with CalA are investigated

#### A.Castellina





#### HEAT-Coihueco intercalibration

HEAT downward for a precise measure of the cross-calibration factors







# Performance of data taking



• Two SD shifts/month online

• More than 300 FD shifts (15-20 days each), mostly on site + remote (20 remote rooms)



The largest worldwide exposure:

- → ~105,000 km<sup>2</sup> sr yr for the measure of the spectrum by SD
- ~135,000 km<sup>2</sup> sr yr for the search of anisotropies

![](_page_9_Picture_12.jpeg)

### Commissioning of AugerPrime ["bring (something newly produced) into working condition"]

- Methods used for Phase I daily monitoring have been adpted to Phase II data
- Currently operating in compatibility mode with Phase I
- Purity of event-level triggers same as in Phase I
- Over 99.9% of events (satisfying EAS triggers) can be reconstructed
- Due to higher UUB sensitivity, bursts at station level appear during lightning periods: estimated 5% exposure loss/year

![](_page_10_Figure_6.jpeg)

Currently finalizing • Alarm settings • Commissioning of triggers and calibration procedures • Data processing anf reconstruction pipelines First analyses of physics quantities ongoing

A.Castellina

![](_page_10_Picture_11.jpeg)

### Commissioning of AugerPrime ["bring (something newly produced) into working condition"]

![](_page_11_Figure_1.jpeg)

A.Castellina

Noise : - HG channel <2 ADC counts - LG and SPMT channels <1 FADC count

![](_page_11_Figure_7.jpeg)

![](_page_11_Picture_8.jpeg)

![](_page_11_Picture_9.jpeg)

![](_page_11_Picture_10.jpeg)

# AugerPrime - one multi-hybrid event

![](_page_12_Figure_1.jpeg)

- Commissioning is ongoing
- It has to be strictly linked to maintenance
- The monitoring is fundamental

### **Publications**

- → SDEU: AugerPrime Surface Detector Electronics [JINST 18 (2023)]
- → *SSD*: [submitted to JINST, 2025]
- → UMD: [JINST 16 (2021) T07008 nd P01026, JINST 12 (2017) P03002]
- → *RD*: in preparation

### **6** Contributions to ICRC2025

- UMD results
- RD Reconstruction
- Status and first results
- CDAS
- Electronics
- RD status

![](_page_12_Picture_20.jpeg)

![](_page_12_Picture_21.jpeg)

![](_page_12_Picture_22.jpeg)

![](_page_12_Picture_23.jpeg)

## More info

### Staff

Staff hired for AugerPrime (UUB, RD) completed their task

- 3 will remain in staff
- 1 payed from AugerPrime budget for 2025
- 2 technicians from CNAE, part time

22 interns from Isazky School

![](_page_13_Picture_7.jpeg)

#### Landowners

Only 1 conflict on 101 properties almost all renewed to cover AugerPrime data taking period ~20 USD/WCD/yr and ~400 USD/FD/yr

![](_page_13_Picture_10.jpeg)

![](_page_13_Picture_11.jpeg)

Gabriel Díaz

Neiber Castro

Sebastián Villar

New FD observer Yosel Balibrea

![](_page_13_Picture_18.jpeg)

![](_page_13_Picture_19.jpeg)

New computing expert Juan Pablo Behler

![](_page_13_Picture_21.jpeg)

Matías Rojas

![](_page_13_Figure_24.jpeg)

![](_page_13_Picture_25.jpeg)

# Auger as an infrastructure for other scientific projects

![](_page_14_Picture_1.jpeg)

A.Castellina

Pierre Auger Observatory: unique infrastructure providing deployment expertise from the local staff, good communication systems, a multitude of detectors for comparison of all techniques, a perfect playground!

A very welcoming environment for cross-calibration and testing detectors

Excellent opportunities to learn from each other and test new ideas

![](_page_14_Picture_6.jpeg)

PEPS

![](_page_14_Figure_7.jpeg)

...Andes Neutrino Telescope

3000.00

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

# Socio-economic impact of Auger

### Local environment

- Close relation with municipality of Malargüe
- General public talks
- Visitor center (almost 12000 visits in 2024)
- Auger seat in the Strategic Planning Commission of Malargüe
- Ordinance for protection of night skies

- Landowners
- 101 owners, almost all contracts already extended to 20235
- Small increase in payment (20 USD/yr for WCD, 400 USD/yr for FD)
- 140 papers

#### **Science**

- Interdisciplinary researches (solar and atmospheric studies)
- Training: 419 PhD students, 27 double degree PhDs
- Infrastructures for other projects
- Technical training (Iszacky school)
- Science Fair

### **Economic impact** •>90% of operational budget is spent in town

- Use of Convention center
- Power line also used by local landowners
- Wi-fi provided to remote land inhabitants
- Donations to local schools

![](_page_15_Figure_27.jpeg)

![](_page_15_Picture_28.jpeg)

![](_page_15_Picture_29.jpeg)

![](_page_15_Picture_31.jpeg)

Science Fair 2024

Pre registered: 85 groups

![](_page_15_Picture_33.jpeg)

## Outreach and Education

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

transmedia. Planetario Malarque

![](_page_16_Picture_5.jpeg)

![](_page_16_Picture_6.jpeg)

with the Pierre Auger Observatory

### Women and Girls in Science Exhibitions 2024

THE VOICE OF WOMEN

![](_page_16_Picture_11.jpeg)

### **AUGERENFOCO**

#### Núm. 6 , Octubre 2024

www.auger.org.ar

#### he últimos veinte años, el Observatorio Pierre Auge revolucionado el estudio de los reyos clamicos de ita energía (RCUAE), las pa

DICIÓN DEL ESPECITRO DE ROUAE

abe que las RCUAE superiores a B x 10

#### ÓN MÁS PESADA A MAYORES

ENERGIAS en los UNICE consisten principa 10<sup>88</sup> eV, están compuestos de núcleos cada

"Auger en Foco 40. E es mayor que el esperado a partir de odelos, por lo que se requieren mediciones

![](_page_16_Picture_23.jpeg)

![](_page_16_Picture_24.jpeg)

![](_page_16_Picture_25.jpeg)

![](_page_16_Picture_26.jpeg)

# Phase I : the first 15 years of Auger

Unrivalled exposure and accuracy in measurements 140 journal publications

+ 3 already accepted

### Take home message

A global, coherent view emerges from the analyses of the data collected at the Pierre Auger Observatory, dispelling the pre-existing UHECR picture Valuable inputs to phenomenological models

Auger provides the only way to explore the UHE domain:

information about hadronic interactions and constraints on BSM effects

![](_page_17_Figure_9.jpeg)

Atmospheric Physics

![](_page_17_Picture_12.jpeg)

![](_page_17_Picture_13.jpeg)

![](_page_18_Figure_0.jpeg)

NEW submitted to ApJL arXiv:2506.11688

D.Ravignani PoS(ICRC2025) 268

- $\rightarrow$  Instep feature confirmed at 5.2 $\sigma$

# Energy spectrum

First measurement of the energy spectrum over the entire declination range -90° to +45° (104,575 km² sr yr)  $\rightarrow$  **No declination dependence** up to  $\delta = +45^{\circ}$  (apart from the modulation expected from the dipolar anisotropy) disfavoring the TA conclusion about a possible astrophysical contribution from the Northern sky [see slide SGP]

![](_page_18_Picture_12.jpeg)

![](_page_18_Picture_13.jpeg)

![](_page_18_Picture_14.jpeg)

## Mass Composition

#### FD, SD, AERA

Measurement from the

- Iongitudinal profile (FD, ~15% Duty Cycle) PRD 90 (2014) 122005+122006
- temporal and lateral distributions (SD, ~100% DC)
- radio footprint (AERA, ~100% DC)

![](_page_19_Figure_6.jpeg)

**NEW** PRD 109 (2024) 022002 PRL 132 (2024) 021001 E.Mayotte, PoS(ICRC2025) 538

PRD 96 (2017) 122003

- →The <X<sub>max</sub>> gets lighter up to ~2 10<sup>18</sup> eV and heavier above this energy, incompatible with pure composition
- The  $\sigma$  (X<sub>max</sub>) at the highest energy
- excludes a large fraction of protons (DNN and FD)
- excludes the GZK as a dominant reason for the spectral cutoff
- →The radio measurement provides an independent confirmation

DNN analysis

- model: constant ER rejected at  $4.4\sigma$

![](_page_19_Figure_20.jpeg)

## Composition informed search for large scale Anisotropy

**Dipolar modulation in RA** at 6.8 $\sigma$  for E>8 EeV, at 5.7 $\sigma$  for 8<E<16 EeV

Cosmic ray interactions with background radiation and magnetized regions depend on the cosmic-ray energy, charge and mass composition, giving rise to different horizons and deflections that are expected to lead to different anisotropies.

$$d(E,Z) = d_R \left(\frac{E/EeV}{Ze}\right)^{\beta_R}$$

• Expected in models with a local dominant source emitting in the EGMF

• Expected in models with many inhomogeneously distributed sources

![](_page_20_Figure_8.jpeg)

![](_page_20_Picture_9.jpeg)

## Composition informed search for large scale Anisotropy

![](_page_21_Figure_1.jpeg)

NEW G.Golup, PoS(ICRC2025) 216

![](_page_21_Picture_6.jpeg)

# Differences between Northern and Sourthern sky?

![](_page_22_Figure_2.jpeg)

|             |      |      | Telesc                 | ope A        | rray (T                                     | elesco      | pe A        | rray Collal                               | boration     | 1 2023      | 3)             |                  | Pierre       | Auger (                                                 | Observ      | servatory (this work) |                                              |              |             |
|-------------|------|------|------------------------|--------------|---------------------------------------------|-------------|-------------|-------------------------------------------|--------------|-------------|----------------|------------------|--------------|---------------------------------------------------------|-------------|-----------------------|----------------------------------------------|--------------|-------------|
|             |      |      | $E_{\min}$             | $N_{ m tot}$ | $rac{\mathcal{E}_{in}}{\mathcal{E}_{tot}}$ | $N_{ m bg}$ | $N_{ m in}$ | $rac{\Phi_{	ext{in}}}{\Phi_{	ext{out}}}$ | $Z_{ m LM}$  | 99%<br>L.L. | post-<br>trial | $E_{\min}$       | $N_{ m tot}$ | $rac{\mathcal{E}_{	ext{in}}}{\mathcal{E}_{	ext{tot}}}$ | $N_{ m bg}$ | $N_{\rm in}$          | $\frac{\Phi_{\text{in}}}{\Phi_{\text{out}}}$ | $Z_{ m LM}$  | 99%<br>U.L. |
| TA hot spot |      | (a)  | $57 { m EeV}$          | 216          | 9.47%                                       | 18.0        | 44          | $2.44\substack{+0.44 \\ -0.39}$           | $+4.8\sigma$ | 1.60        | $2.8\sigma$    | $44.6~{\rm EeV}$ | 1074         | 1.00%                                                   | 10.7        | 9                     | $0.84\substack{+0.31 \\ -0.25}$              | $-0.5\sigma$ | 1.76        |
|             |      | (b1) | $10^{19.4}\mathrm{eV}$ | 1125         | 5.88%                                       | 64.0        | 101         | $1.58\substack{+0.17 \\ -0.16}$           | $+4.1\sigma$ | 1.22        | $3.3\sigma$    | $20.5~{\rm EeV}$ | 8374         | 0.84%                                                   | 70.1        | 65                    | $0.93\substack{+0.12 \\ -0.11}$              | $-0.6\sigma$ | 1.23        |
| PPSC        |      | (b2) | $10^{19.5}\mathrm{eV}$ | 728          | 5.87%                                       | 41.1        | 70          | $1.70\substack{+0.22 \\ -0.20}$           | $+4.0\sigma$ | 1.25        | $3.2\sigma$    | $25.5~{\rm EeV}$ | 5156         | 0.84%                                                   | 43.5        | 39                    | $0.90\substack{+0.15 \\ -0.14}$              | $-0.7\sigma$ | 1.29        |
|             | — I, | (b3) | $10^{19.6}\mathrm{eV}$ | 441          | 5.84%                                       | 24.6        | 45          | $1.83\substack{+0.31 \\ -0.27}$           | $+3.6\sigma$ | 1.23        | $3.0\sigma$    | $31.7~{\rm EeV}$ | 2990         | 0.87%                                                   | 26.0        | 27                    | $1.04\substack{+0.21 \\ -0.19}$              | $+0.2\sigma$ | 1.61        |
|             |      |      |                        |              |                                             |             |             |                                           |              |             |                |                  |              |                                                         |             |                       |                                              |              | 1           |

 $\rightarrow$  confirmation of the Centaurus region as most significant excess (4.0 $\sigma$  post-trial), extended to lower energies (20 EeV) no hints for excesses in the TA "spots" with data of comparable size —> at variance with the claim of TA that the declination dependence of the UHECR energy spectrum is due to the presence of excesses in particular regions of the Northern sky

![](_page_22_Picture_9.jpeg)

NEW

![](_page_22_Picture_10.jpeg)

# Galactic backtracking + limited UHECR horizon

Idea: apply GMF models backtracking UHE events above 100 EeV, taking into account the volume of the Universe responsible for them 8 GMF models, 6 different source catalogs

### Single events analysis

The backtracked position of 39 of 40 events above 100 EeV re compatible with more than one source of the SBG, Fermi-LAT, Swift-BAT or radio galaxies

### Likelihood based analysis

We can exclude at  $5\sigma$  CL a contribution of >40% van Velzen, >65% Fermi-LAT, >67% Lunardini and 70% Swift-BAT Only the Fermi-LAT catalog describes the data better than isotropy at low signal fraction (5-10%)

Inclusion of EGMF, UUHECR, newer GMF models can change the conclusion

| NEW           |                   |
|---------------|-------------------|
| M.Bianciotto, | PoS(ICRC2025) 188 |

A.Castellina

![](_page_23_Figure_9.jpeg)

![](_page_23_Picture_11.jpeg)

| 4    | 0.5     | 0.6  |
|------|---------|------|
| Sign | al frac | tion |

## Astrophysical interpretation (energy spectrum+mass composition)

Basic scenario:

- 2 populations of EG identical sources, uniformly distributed
- power law injected energy spectrum + rigidity cutoff
- propagation only (no in-source interactions considered)

![](_page_24_Figure_5.jpeg)

#### LE component

soft spectrum, unconstrained cutoff point to

- ➡interactions in-source or in the source environment indication
- could be made of EG protons if a Galactic component is included

Auger Coll., JCAP05 (2023) 024

→Ankle ~ 5 EeV: interplay between the two popolations ➡Instep ~ 10 EeV: interplay between He and CNO primary masses →Luminosity density ~ 6 x 10<sup>44</sup> erg *Mpc*<sup>-3</sup> *yr*<sup>-1</sup> by continuously emitting sources to supply UHECR above the ankle

#### HE component

hard spectrum, low cutoff, limited mixing of different nuclear species point to

- confinement of UHECR in the source, magnetic horizon
- suppression mainly due to exhaustion of the sources
- →Limited source to source variations

![](_page_24_Figure_21.jpeg)

![](_page_24_Picture_22.jpeg)

# The mass composition at UHE

From the global fit of the observed  $[X_{max}, S_{1000}]$  distributions and from the most recent hadronic interaction models (EPOS LHC-R)

![](_page_25_Figure_2.jpeg)

FIG. 1. Total energy loss lengths for various nuclei: p, He, O, Fe, and Pt. The black dashed line is the energy loss length due to the adiabatic expansion of the universe. CMB and EBL [60] are considered as target photons.

![](_page_25_Picture_6.jpeg)

![](_page_25_Picture_7.jpeg)

Heavier nuclei favored at the highest energies

$$\frac{c}{2\Gamma^2} \int_{\varepsilon'_{\rm th}}^{\infty} \varepsilon' \sigma(\varepsilon') \int_{\varepsilon'/2\Gamma}^{\infty} \frac{n_{\gamma}(\varepsilon)}{\varepsilon^2} d\varepsilon d\varepsilon' \right)^{-1}$$

New questions:

— Are there astrophysical conditions for which ultra-heavy UHECR can exist?

Metal rich sources, r-processes = collapsars, BNS mergers

— What is the maximum A needed to explain our data?

![](_page_25_Figure_14.jpeg)

![](_page_25_Picture_16.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

![](_page_26_Figure_6.jpeg)

 $\mathbf{Z}\mathbf{I}$ 

### Auger and TA WG - full sky search for anisotropies

|                            | $E_{\min}$                                                         | TS   | f/%                    | Θ/°                    |
|----------------------------|--------------------------------------------------------------------|------|------------------------|------------------------|
| All galaxies               | $37  \text{EeV}_{\text{Auger}} \approx 47  \text{EeV}_{\text{TA}}$ | 19.3 | $13.1^{+4.7}_{-3.6}$   | $15.5^{+6.1}_{-3.6}$   |
| Starburst galaxies         | $38  EeV_{Auger} \approx 48  EeV_{TA}$                             | 27.3 | $10.6^{+56.6}_{-3.2}$  | $17.6^{+26.6}_{-4.1}$  |
| All AGNs                   | $38  \text{EeV}_{\text{Auger}} \approx 48  \text{EeV}_{\text{TA}}$ | 17.6 | $4.8^{+1.6}_{-1.4}$    | $15.4^{+3.5}_{-2.8}$   |
| Jetted AGNs                | $37  \text{EeV}_{\text{Auger}} \approx 47  \text{EeV}_{\text{TA}}$ | 22.9 | $8.8^{-2.6}_{-2.3}$    | $17.4^{+3.4}_{-2.8}$   |
| All gal. (no atten.)       | $37 \text{ EeV}_{\text{Auger}} \approx 47 \text{ EeV}_{\text{TA}}$ | 13.5 | $33.6^{+26.3}_{-19.4}$ | $29.2^{+12.9}_{-17.5}$ |
| Starburst gal. (no atten.) | $38  EeV_{Auger} \approx 48  EeV_{TA}$                             | 27.3 | $10.6^{+4.0}_{-2.7}$   | $15.0^{+4.8}_{-2.9}$   |

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_5.jpeg)

|   | c ( <u> </u> |  |
|---|--------------|--|
| σ | ficanc       |  |
|   | gnij         |  |
| σ | l si         |  |
|   | tria         |  |
| σ | pre-         |  |
| σ |              |  |
| σ |              |  |

|                    | l | $E_{\min}$                          | pre-trial   | post-trial  |
|--------------------|---|-------------------------------------|-------------|-------------|
| Auto-Correlation   | 2 | $41EeV_{Auger}\approx51.8EeV_{TA}$  | $4.2\sigma$ | $2.1\sigma$ |
| All galaxies       | 2 | $37EeV_{Auger}\approx 46.5EeV_{TA}$ | $3.2\sigma$ | _           |
| Starburst galaxies | 2 | $38EeV_{Auger}\approx 47.8EeV_{TA}$ | $4.5\sigma$ | $2.7\sigma$ |
| All AGNs           | 2 | $38EeV_{Auger}\approx 47.8EeV_{TA}$ | $4.7\sigma$ | $3.0\sigma$ |
| Jetted AGNs        | 2 | $38EeV_{Auger}\approx 47.8EeV_{TA}$ | $4.1\sigma$ | $2.0\sigma$ |

NEW

A.Galvez Urena, PoS(ICRC2025) 185

![](_page_27_Picture_10.jpeg)

![](_page_27_Picture_11.jpeg)

## The science case

### The origin of the flux suppression above 10<sup>19.5</sup> eV

![](_page_28_Figure_2.jpeg)

![](_page_28_Picture_3.jpeg)

### The identification of the sources

![](_page_28_Picture_5.jpeg)

Particle interactions at UHE Hints for new physics?

![](_page_28_Picture_8.jpeg)

### Do UHE photons and neutrinos exist? Transients / steady sources

Need accelerator of size of Mecury's orbit to reach 10<sup>20</sup> eV with current technology

#### The nuclear composition at UHE

![](_page_28_Picture_16.jpeg)

![](_page_28_Picture_18.jpeg)

![](_page_28_Picture_19.jpeg)

# Multi-hybrid events in AugerPrime

WCD/SSD/RD can collect multi-hybrid events with a 100% duty cycle Separation of shower components can be obtained

- by WCD/SSD for events up to ~60°
- by WCD/RD for inclined events >60°
- by WCD/SSD/UMD extending the mass sensitivity to the lower energies and improving the photons/hadrons discrimination

Hadronic interactions can be studied

- By WCD/RD simultaneously measuring energy and muon content of EAS up to the UHE with 100% duty cycle
- By exploiting different muon populations (WCD and UMD)

![](_page_29_Picture_8.jpeg)

![](_page_29_Figure_11.jpeg)

![](_page_29_Figure_14.jpeg)

![](_page_29_Picture_16.jpeg)

![](_page_29_Picture_17.jpeg)

## Multi-hybrid events and Machine learning

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

powerful Machine Learning techniques need to be cross-checked by means of multi-hybrid measurements!

![](_page_30_Figure_6.jpeg)

 $\bigcirc$ 

![](_page_30_Picture_8.jpeg)

# Multi-hybrid events and composition

![](_page_31_Figure_1.jpeg)

Composition features (DNN, current result, bias-corrected with FD) :

- $\rightarrow$  energy independent elongation rate excluded at 4.4 $\sigma$ ,
- $\rightarrow$  two breaks rejected at ~2 $\sigma$

5*o* reachable in 10 years from now with AugerPrime

![](_page_31_Figure_8.jpeg)

![](_page_31_Picture_12.jpeg)

### Multi-hybrid events and composition

![](_page_32_Figure_1.jpeg)

What is the fraction of protons at UHE ?

WCD + SSD

merit factor MF: difference in units of std-dev

![](_page_32_Figure_7.jpeg)

if UHE composition mix is 5%p and 95% Fe

![](_page_32_Figure_9.jpeg)

![](_page_32_Picture_12.jpeg)

![](_page_32_Picture_13.jpeg)

### Multi-hybrid events and hadronic interactions

![](_page_33_Figure_1.jpeg)

*RD+WCD*, simulations - 10 years. (mass composition mixed) ad-hoc correction for the muon deficit in simulation for the mean  $R_{\mu}$ 

What is the muon number at UHE ?

### WCD + RD - inclined events

![](_page_33_Figure_8.jpeg)

![](_page_33_Picture_9.jpeg)

# Phase II : the first preliminary results

- First preliminary measurement of the energy spectrum (SD-1500,  $9 < 60^{\circ}$ ) with the data of Phase II
- → Very good agreement with Phase I result !

Ч -S N E E Sel 10<sup>37</sup> ш X

![](_page_34_Picture_6.jpeg)

![](_page_34_Figure_7.jpeg)

![](_page_34_Picture_8.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_35_Picture_3.jpeg)

#### A.Castellina

![](_page_35_Picture_7.jpeg)

## Science roadmap - From our coordinators (D.Boncioli, L.Cazon)

### Mass composition at UHE is the key; together with the spectrum info

- what are the nuclear species ?
- up to which mass are our data described at the highest energies?
- which components do we need to explain the Galactic to extragalactic transition?
- Input to hadronic interaction models

### + Arrival directions

- exploration of the most interesting regions (CenA)
- Study of mass-informed dipolar amplitude
- → UHECR-informed studies of models of GMFs and EGMFs

![](_page_36_Figure_10.jpeg)

![](_page_36_Picture_14.jpeg)

### Neutral particles

- $\rightarrow$  Cosmogenic  $\nu$ s and  $\gamma$ s observation/non observation provide more info on the possible sources - strong connection to proton fraction at UHE
- Astrophysical  $\nu$ s and  $\gamma$ s can be studied, down to which energy?
- ➡ Info on BSM effects (LIV, SHDM, upping showers)

![](_page_36_Figure_22.jpeg)

![](_page_36_Figure_23.jpeg)

![](_page_36_Picture_24.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

### Started in 2007 with 1% of CR data, portal opened in 2021

| Delesse to a | Dete           | Contont                                                                                                          | Secolf a DOI           |
|--------------|----------------|------------------------------------------------------------------------------------------------------------------|------------------------|
| Release tag  | Date           | Content                                                                                                          | Specific DOI           |
| Release 3.0  | March 20, 2024 | 10% cosmic-ray data, low energy sample                                                                           | https://doi.org/10.528 |
| Release 2.0  | Dec 22, 2022   | 10% cosmic-ray data, inclined sample (60°-80°),<br>Outreach section with different languages                     | https://doi.org/10.528 |
| Release 1.1  | Oct 26, 2021   | 100% atmospheric data and scaler data                                                                            | https://doi.org/10.528 |
| Release 1.0  | Feb 15, 2021   | 10% cosmic-ray data, vertical sample (0°-60°) and auxiliary files, ready-to-use event display, analysis examples | https://doi.org/10.528 |

Table 1 List of specific releases on the open data portal [19] with the corresponding DOIs

→ March 2024: >54000 SD750 + 197 HeCo hybrid events 100 highest energy events

→ Next release : 30% of Phase I data (2004-2021) vertical SD + Hybrids, 100% atmo+scaler

NEW

EPJC 85 (2025) 70 V.Scherini, PoS(ICRC2025) 646 The European Physical Journal

volume 85 · number 1 · january · 2025

![](_page_37_Picture_13.jpeg)

### Particles and Fields

From "The Pierre Auger Observatory open data" by Pierre Auger Collaboration, Eur. Phys. J. C 85, 70 (2025).

![](_page_37_Figure_16.jpeg)

Visualization of an exemplary event. Left panel: camera view of the fluorescence detector; the cosmic-ray shower is seen as a trace that moves along the pixels of the camera, from early (green) to late (red) pixels. Right panel: reconstructed energy deposit as a function of atmospheric depth as measured with the two telescopes participating in the event.

![](_page_37_Picture_18.jpeg)

![](_page_37_Picture_19.jpeg)

81/zenodo.10488964 81/zenodo.6867688

81/zenodo.5588460 81/zenodo.4487613

![](_page_37_Picture_23.jpeg)

![](_page_37_Picture_27.jpeg)

# New data center at CNAF

The storage and computing resources required for 2025 have arrived at CNAF.

#### Storage:

The /sps/pauger will be increased from 150 T  $\rightarrow$  300 T

#### **Computing**:

about 3000 HS06 (similar computing power as in Lyon) has also be given as requested. The access to the pauger users will be provided through a HTCondor batch system

**TAPE**: the tape is also available at this endpoint : xferarchive.cr.cnaf.infn.it:8443/pauger-tape/

https://www.auger.unam.mx/AugerWiki/CNAF

![](_page_38_Picture_10.jpeg)

![](_page_38_Picture_11.jpeg)

![](_page_38_Picture_13.jpeg)

### Synchronization between Malargue and CNAF:

Testing new software tools : very advanced [Lorenzo Perrone, Juan Pablo Behler]

A new software tool - *Mirage* - based on rclone has been created for this task

#### Key points:

→ optimize the usage of bandwidth and CPU through continuous and parallel processes replacing the current rsync-based procedure executed twice a day. → Filtering options (you can activate/deactivate specific targets)

- → More efficient diagnostic

![](_page_38_Picture_25.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_4.jpeg)

![](_page_40_Picture_2.jpeg)

# BACKUP

![](_page_40_Picture_5.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Picture_1.jpeg)

![](_page_41_Figure_2.jpeg)

## The highest energy event

| Date                    | 2019-11-1 |  |  |  |
|-------------------------|-----------|--|--|--|
| Energy                  | 166±13 Ee |  |  |  |
| θ                       | 58.6°     |  |  |  |
| ф                       | 224.4°    |  |  |  |
| β                       | -2.0      |  |  |  |
| t <sub>1/2</sub> (1000) | 98±3 ns   |  |  |  |
| δ                       | -52.0°    |  |  |  |
| a                       | 128.9°    |  |  |  |
| Multiplicity            | 34        |  |  |  |
|                         |           |  |  |  |

![](_page_41_Picture_5.jpeg)

![](_page_41_Figure_6.jpeg)

![](_page_41_Picture_7.jpeg)

![](_page_41_Picture_8.jpeg)

## SD-PMT maintenance

### In the field

to repair or change PMTs with failures

 PMT weeks: special SDE shifts dedicated to the PMT maintenance in the field

> twice/year for 2 weeks 2-3 teams in the field at the same time

> > 40 to 60 PMTs fixed

![](_page_42_Picture_6.jpeg)

**INFN-Torino in charge of SD-PMTs** [M.Aglietta, A.Gorgi, A.Zampieri]

![](_page_42_Figure_10.jpeg)

![](_page_42_Picture_12.jpeg)

#### QUOTATION

Sens-Tech Ltd. 18 The Avenue Egham Surrey TW20 9AB United Kingdom

Telephone: 01784 624410 E Mail: info@sens-tech.com

| Customer                                 | Quotation           |
|------------------------------------------|---------------------|
| Karlsruher Institut fur Technology (KIT) | Quote Number:       |
| Finanzmanagement                         | Date:               |
| Hermann-von-Helmholtz-Platz              | Sens-Tech Contact:  |
| Eggenstein-Leopoldshafen                 | Valid To:           |
| Germany                                  | Customer Reference: |
| Contact Name:                            | Payment Terms:      |
| Contact Email:                           | Currency:           |

| Line No. | Sens-Tech Part No. | Product Description | Quantity | Unit Price | Lead Time | Total Price |
|----------|--------------------|---------------------|----------|------------|-----------|-------------|
| 1        | PS2010/12          | POWER SUPPLY        | 25       | €293.39    |           | €7,334.75   |
| 2        | PS2010/12          | POWER SUPPLY        | 50       | €281.14    |           | €14,057.00  |
| 3        | PS2010/12          | POWER SUPPLY        | 100      | €268.89    |           | €26,889.00  |
| 4        | PS2010/12          | POWER SUPPLY        | 250      | €256.64    |           | €64,160.00  |
| 5        | EM33               | EM33 ISSUE 3        | 25       | €233.61    |           | €5,840.25   |
| 6        | EM33               | EM33 ISSUE 3        | 50       | €202.93    |           | €10,146.50  |
| 7        | EM33               | EM33 ISSUE 3        | 100      | €192.78    |           | €19,278.00  |
| 8        | EM33               | EM33 ISSUE 3        | 250      | €173.50    |           | €43,375.00  |

### $\square$ SENS - TECH

#### 100691

24/06/2025

Paul Hurtado

08/07/2025

30 Days from Date of Invoice Euros

![](_page_43_Picture_14.jpeg)

## More info

![](_page_44_Picture_1.jpeg)

### REQUEST: 1,716 KUSD (Operating) + 85 KUSD (Reserve) + C-O until 2023 = 1,801 KUSD + C-O

### OCL PER PERSON: 9,529.10 USD

Includes Mexico paying their full share for 9 people and does not include funds for the reserve

![](_page_44_Picture_6.jpeg)

![](_page_44_Picture_7.jpeg)

![](_page_44_Picture_8.jpeg)

![](_page_44_Picture_9.jpeg)

### 10,800 USD for 2026. VERY CONSERVATIVE

![](_page_44_Figure_13.jpeg)

![](_page_44_Picture_14.jpeg)

![](_page_44_Picture_15.jpeg)

### Calibration - WCD+SSD

- Vertical Equivalent Muon (VEM) for WCD
- Minimum Ionizing Particle (MIP) for SSD
- ➡ In >99% of cases muon hump well determined
- → Day/night fluctuations: ~3% for VEM and 15% for MIP
- → Uniformity across the array ~13% (VEM) and 6% (MIP)

![](_page_45_Figure_6.jpeg)

WCD+SSD coincidence allows calibration of aged WCD :

![](_page_45_Figure_8.jpeg)

SSD

![](_page_45_Figure_12.jpeg)

![](_page_45_Figure_13.jpeg)

![](_page_45_Figure_14.jpeg)

VEM Charge

![](_page_45_Figure_16.jpeg)

![](_page_45_Figure_17.jpeg)

![](_page_45_Picture_19.jpeg)

![](_page_45_Picture_20.jpeg)

### smallPMT cross-calibration

$$S_{\text{SPMT}}/\text{VEM} = \beta Q_{\text{SPMT}}/(\text{ADC counts})$$

- WCD PMTs vs sPMT

![](_page_46_Figure_6.jpeg)

![](_page_46_Picture_10.jpeg)

### FD calibration: the XY scanner

- Scan complete telescope aperture (~1700 positions) with uniformly emitting, absolutely calibrated light source on rail system
- Permanent infrastructure installed at all telescopes
- all telescopes measured at least once
- Systematic uncertainty in absolute calibration of the fluorescence detectors of 6% (as compared to 9% with former large-diameter source)
- Comparison with CalA past calibration under study (Roma/KIT)

![](_page_47_Figure_6.jpeg)

![](_page_47_Picture_10.jpeg)

![](_page_47_Picture_11.jpeg)

![](_page_47_Picture_13.jpeg)

![](_page_47_Picture_14.jpeg)

### Calibration - RD

- Measure of the response of hardware components (in laboratory)
- → Relative calibration: drone measurements
- → Absolute scale: measure of the Galactic modulation in the 30-80 MHz frequency band

### ➡ Uncertainty in energy scale : Goal: <10%</p> [with AERA: 14%]

![](_page_48_Figure_5.jpeg)

- → Measure of the rate of SiPM signals as a function of threshold for different bias voltages
- Threshold for the binary mode set at 2.5 photoelectrons.

→ The gain stability has been measured to be within 1% <u>(3 years of data)</u>

#### A.Castellina

![](_page_48_Figure_12.jpeg)

![](_page_48_Figure_13.jpeg)

![](_page_48_Picture_15.jpeg)

![](_page_48_Picture_16.jpeg)

![](_page_49_Figure_0.jpeg)

## Radio emission in EAS

• asymmetric footprint: it depends on relative weight of the 2 effects (i.e. on the geomagnetic and

Amplitude(E)  $\propto N_{\text{particles}} \propto E_{\text{primary}}$ received power  $\propto (E_{primary})^2$ 4000 3000

![](_page_49_Figure_14.jpeg)

![](_page_49_Picture_16.jpeg)

![](_page_49_Picture_17.jpeg)

## Astrophysical interpretation - the magnetic horizon effect

EG magnetic fields between Earth and the closest sources can affect the observed spectrum, reducing the low-rigidity particle flux

Suppression factor 
$$G(E) \equiv \frac{J(E)}{J(E)_{d_S \to 0}}$$
Normalized intersource distance 
$$X_s \simeq \frac{d_s}{10 \ Mpc} \sqrt{\frac{25 \ kpc}{L_{coh}}}$$

![](_page_50_Figure_4.jpeg)

 $\rightarrow$  The spectrum is softer for larger  $R_{crit}$  ( $E_{crit} = Z R_{crit}$ )

The magnetic horizon plays a role if

```
X_s R_{crit} \simeq 5 to 10 EeV
```

Implying strong EGMF O(10-200) nG in the Local Supercluster

li, 4 Luglio 2025

![](_page_50_Picture_10.jpeg)

### Astrophysical interpretation (energy spectrum+mass composition+arrival directions)

![](_page_51_Figure_1.jpeg)

- Data well described by a model with f ~ 20% from SBGs and  $\delta$ ~20° at 40 EeV, N-dominated hard injection spectrum
- Significance of SBG model ~4.5 $\sigma$ , contribution of Centaurus A dominant (~80%)
- **y-AGN sources disfavoured** (not possible when considering only energy and mass composition)

![](_page_51_Figure_7.jpeg)

|    | Cen A | Cen A, $m = 0.0$ Cen A, $m = 3.4$ |      |        |      | m = 3.4 | $\gamma { m AGN},m=5.0$ |                     |  |
|----|-------|-----------------------------------|------|--------|------|---------|-------------------------|---------------------|--|
|    |       | + syst                            |      | + syst |      | + syst  |                         | + syst              |  |
|    | 22.8  | 17.3                              | 22.2 | 19.1   | 27.6 | 25.6    | 23.9, <mark>ª</mark>    | 9.8, <mark>ª</mark> |  |
|    | -0.1  | -1.4                              | -0.4 | -1.1   | -5.2 | -4.5    | 26.8                    | 3.9                 |  |
| ax | 1.9   | 0.2                               | 1.8  | 1.0    | 6.2  | 2.0     | -0.8                    | 6.4                 |  |
| s  | 20.9  | 18.7                              | 20.8 | 19.0   | 26.6 | 27.1    | -2.1                    | -3.0                |  |

![](_page_51_Picture_11.jpeg)

![](_page_51_Picture_13.jpeg)

![](_page_51_Picture_14.jpeg)

### Auger and TA WG - full sky search for anisotropies

![](_page_52_Figure_1.jpeg)

Energy scale systematic uncertainties ±14% for Auger

Cross-calibration of the datasets in the common declination band

- scatter plots of arrival directions immediately interpretable
- equal sensitivity anywhere in the sky
- upper limits uniform over the sky

Confirm the presence of a dipole pointing away from the GC

![](_page_52_Figure_10.jpeg)

![](_page_52_Figure_11.jpeg)

![](_page_52_Picture_13.jpeg)

### Testing the predictions of hadronic models

Global fit of the observed  $[X_{max}, S_{1000}]$  distributions with templates of free mass composition and different hadronic interaction models

![](_page_53_Figure_2.jpeg)

Combined fit of the  $[X_{max}, S_{1000}]$ distributions without any adjustments

Combined fit of the [X<sub>max</sub>, S<sub>1000</sub>] distributions with angular dependent muon rescaling  $R_{had}(9)$ 

### largest improvement

Combined fit of the  $[X_{max}, S_{1000}]$ distributions with angular dependent muon rescaling  $R_{had}(9)$  and shift of  $X_{max}$ 

further improvement -> heavier composition

### NEW

![](_page_53_Figure_11.jpeg)

 $X_{max} \rightarrow X_{max} + \Delta X_{max}$  $S_{Had}(\theta) \rightarrow S_{Had}(\theta) \cdot \mathbf{R}_{Had}(\theta)$ 

![](_page_53_Figure_13.jpeg)

![](_page_53_Figure_14.jpeg)

Best description of data **if models modified** such that : X<sub>max</sub> deeper by 20-50 g cm<sup>-2</sup>

S<sub>had</sub> increased by 15-25%

![](_page_53_Picture_17.jpeg)

![](_page_53_Picture_18.jpeg)

## KM3NeT event

Assuming the estimated neutrino flux central value ~ 29 events should have been detected with Auger SD1500...

 $(\sim 1.5 \text{ events assuming})$ central value minus 2 sigma)

![](_page_54_Figure_3.jpeg)

![](_page_54_Picture_7.jpeg)