
Full sim: status and perspectives

A. Di Simone
INFN Tor Vergata

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

2

OutlineOutline
● A few things were implemented in view of the next round of

production
● More precise tuning of the bgframes

● More generator info in metadata

● Radmon

● Optical photons for FTOF

● In addition, there are a number of more general, medium-term,
longstanding issues we need to start dealing with
● Event display

● Event structure

● Runtime configuration

● Geometry handling

● There are MANY MORE issues we should be working on, but
one must be realistic, and with present manpower they'll have to
wait

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

3

Tuning of bg framesTuning of bg frames
● Reminder: bgframes production is “normal” full simulation job, with a few

modifications

● A scoring volume is defined, mostly coinciding with the final_focus

● At the exit of the scoring volume, all particles BUT neutrons are killed

● Electrons and photons @ the boundary are saved to file, to be passed to fast-sim

● Neutrons keep being propagated in the detectors, and their interactions are saved to
file to be fed to fast-sim

● Some energy cuts are applied on particles when they are written to file

● Motivation was that in the fast-sim scale of times, reading from file a large number of
entries is a significant overhead

● Previous cuts were chosen (hard coded) about 2 years ago; now the request was
made to better tune them

● Implemented configurability at runtime of the cuts, with additional macro commands

– Now committed, under testing

● This requires a special .mac file to be provided when generating bgframes (relevant
for production system)

– BrunoApp -m RadBhabha.Prod.mac -f FIConfig.mac

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

4

Generator MetadataGenerator Metadata
● Reminder: metadata are all configuration parameters of a

run
● do not change from event to event

● A lot a info is already saved by default

● Alejandro asked to include more details on the
RadBhabha generator, like the bunch crossing frequency

● Required some code changes in Brn3BGen and BrnCore
● Now committed and tested

 OBJ: TParameter<double> BbbremBXFreq@1e36 Named templated parameter type
 OBJ: TParameter<double> BbbremCutOff Named templated parameter type
 OBJ: TParameter<double> BbbremLumiOverFc Named templated parameter type
 OBJ: TParameter<double> BbbremMinDE Named templated parameter type
 OBJ: TParameter<double> BbbremNbBhabha Named templated parameter type
 OBJ: TParameter<double> BbbremPrescale Named templated parameter type
 OBJ: TParameter<double> BbbremXSec Named templated parameter type

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

5

Rad monRad mon
● Started some preliminary studies to design a

radiation monitor

● First request was to add some scoring volumes
to assess the expected dose

● Done and committed
● See next slide for a picture

● The scoring volumes use for detection the
same setup used for other FE boards

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

6

Rad monRad mon

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

7

Optical photons in FTOFOptical photons in FTOF
● Request from Nicolas/Leonid to include optical

processes for FTOF like we did for DIRC
● Work ongoing
● Requires modifications in two main areas

– Definition of optical properties for the materials and the
surfaces

● Done at runtime by detector experts with no code changes
– Implementation of any detector-specific C++ code needed

for detection
● Hopefully I'll be of some help at this stage

● The ambitious plan is to include it in this round of
production

– Not clear whether they will make it

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

8

Event displayEvent display
● All the truth information (including trajectories)

was persistified using native ROOT classes
● One of the reasons was to allow easy drawing

within root
● Never really exploited until the Vienna meeting,

where Eugenio produced some astounding ROOT
displays

– See next slides

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

9

Event displayEvent display

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

10

Event displayEvent display

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

11

Event displayEvent display

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

12

Event displayEvent display
● Given the very nice performance of ROOT as event display, I

propose we concentrate our very limited manpower in supporting it
as the only “official” display

● Newcomers should be pushed towards it
● Example macro already available in BrnRunTime

● A few nice side effects of this display:

● It allows accelerated graphics, without adding GL dependencies on top of
Bruno/G4

– Safe also from the point of view of building/deploying

● It does not require a special intermediate file to be produced by G4
– All it needs is the “normal” hit file with truth information and the input gdml for the

geometry

● Eventually, we could drop other visualization drivers altogether
● Raytracer could probably be kept, as it is the only one to give you reliable

visualization of all “exotic” volumes

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

13

Event structureEvent structure
● Present event structure based on a

monolithic event containing all the
hits

● Truth information was split in
separate branches some time ago

● Disadvantage of the monolithic
event is mainly lack of flexibility

● The Event class is where one loses
modularity, since all detectors must
be declaring their outputs to it

● Adding a new detector requires
(trivial, hence error prone) code
changes in several places across
three packages

– BrnCore, BrnApp, BrnXXX

SVT hits

DCH hits

IFR hits

Branch: MC Truth

Branch: IR boundary

Branch: SVT boundary

Branch: DCH boundary

Branch: IFR boundary

H
it

s

Branch: Event

Tr
e

e

Branch: Trajectories

FE dose

...

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

14

Event structureEvent structure
● My proposal is to push

modularity to its full extent,
and remove the global event
altogether
● NOT for this production

● Each detector will manage
its hits and
SensitiveDetectors with no
couplings to other detectors
● Drawback: this will break all

existing analyses
– Fixes should be trivial, though

Branch: MC Truth

Branch: IR boundary

Branch: SVT boundary

Branch: DCH boundary

Branch: IFR boundary

Tr
e

e

Branch: Trajectories

Branch: SVT hits

Branch: DCH hits

Branch: DIRC hits

Branch: FE hits

Branch: XXX hits

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

15

Runtime configurationRuntime configuration
● Really, we are reaching the limit of what one can do with .mac files

● I know I have been claiming this since three years, but things are now
really bad

● We are not far away from the point where a key parameter may have to
be hard coded because we just don't know how to access it at runtime

● I would like to resume experimenting with python-based
configuration

● My previous pyBruno tests were using pyBoost for dictionary generation
– I propose now to benchmark how SWIG behaves

● This requires, most likely, that we drop static linking in favor of shared
libraries

– I would need some help for the building/configuration

● I also propose to delay all the static/dynamic linking debate until we have
a working prototype and we can measure its performances

20
12

03
05

 C
S

G
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

16

Geometry handlingGeometry handling
● Complaint by users about copy/replication of gdml files across geometry variants

● Reminder: present schema is that a geometry variant is a folder within BrnRunTime

● Each folder must be self-contained (because of a gdml limit), hence one really has to copy files
around

● Each modification to the geometry (or a new geometry altogether) requires a new release of the
whole Bruno code

● The duplication problem could be mitigated, as suggested by Eugenio, by using svn links

● Still, one can't use a given Bruno release to run on older versions of a geometry variant

● Nor with newer geometry variants/versions

● I propose to decouple geometry releases from Bruno releases

● Geometry becomes an external dependency, like many others

– Just easier, because it has no code inside, only plain gdml files

● From the Bruno side, the choice of a geometry release must be done using an env variable

– We could also provide some scripts to link/copy a geometry release locally for manual modifications

● In this context, each geometry variant_version becomes a new geometry release

– A sensible numbering/naming scheme can be agreed upon

● On the repository side, variants could be branches of a new package

● What is the opinion of the release building team?

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16

