EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Chapter 17: Control System Valentina Dompè, Giulia Latini, Stefano Pioli (LNF-INFN)

This project has received funding from the European Union's Horizon Europe research and innovation program under grant agreement No. 10107-273

IX TDR Review Committee Meeting June 16-18, 2025

1	Control System	. 9
1.1	Overview	9
1.1.1	Architecture	. 9
1.1.2	Vertical Column	11
1.1.2.1	l Hardware	. 11
1.1.2.2	2 Software	. 12
1.1.3	Control Equipment Catalogue	13
1.2	Services	14
1.2.1	Design and Architecture	14
1.2.2	Functionality	14
1.2.3	High Level Applications	15
1.3	Graphic and Not-Graphic Interfaces	15
1.4	AI for EuPRAXIA control system	16

Control System Requirements and Architecture

- REQ-1000 Scalability: efficient handling of large number of signals (10⁵ - 10⁶) without significantly impairing performance
- **REQ-2000 Performance:** fast rate sampling capability
- REQ-3000 Maintainability: new requirements and technology changes emerging over the years should be easy to be included minimally impacting other systems
- **REQ-4000 Reliability:** low rate of failures, to meet the overall availability objectives of the facility
- REQ-5000 Usability: intuitive, efficient and uniform operator interfaces (OPIs) for users, implemented to minimize the possibility of human error
- **REQ-6000 Longevity:** EuPRAXIA is expected to be in operation for decades need of a control system allowing for continued operation throughout the lifetime of the facility

Control System software and device integration

Vertical columns describe how the devices are integrated in the control system, by hw and sw points of view.

Control System software and device integration

Vertical columns describe how the devices are integrated in the control system, by hw and sw points of view.

- EuPRAXIA Control System based on EPICS common standard for several facilities worldwide
- Client (OPIs, central services) Server (EPICS) architecture
- Ethernet network communication via Channel Access
 protocol
- OPIs and Central Services access devices parameters (PVs) in the IOC through CA

Beam Loss Monitors

S

Control System software and device integration

Vertical columns describe how the devices are integrated in the control system, by hw and sw points of view.

			_
Laser Transfer line cameras	Magnet Power supp		
Mirror motors Shutters	Timing MRF distributed	system	
RF candiNova modulators LiberaLLRF systems lystron-Loop feedback Phase Shifter	Vacuum Ion pumps Getter pumps Scroll pumps Turbo pumps	Diagnostics Cameras Flag Motors Flag bulbs Current Monitor Faraday cups BPMs Cavity BPMs	
Functional safety Personnel Safety Machine Protection Intra-pulse interlocks	Vacuum valves Cooling Chillers Cooling-plant		
	51		

Thermo couple

Main Central Services

High Level Applications

pyEpics for EPICS variables advanced preprocessing functionalities;

Al automation tools for monitoring, operations and predictions

REQ-4000

Alarm Handling

Alarms severity and thresholds can be set to EPICS variables and propagated to linked ones for immediate knowledge;

Functional safety systems (MPS & PSS)

REQ-4000

Archiving

Data historization based on threelevel basis for efficient disk resources management

REQ-2000

Logging

Logging tools to for easy access to IOC error and log messages (iocLogClient, iocLogServer)

REQ-3000

Achievements: Technological Readiness Level (Sub-Components)

Sub - systems	TRL	Comments
EPICS IOCs development	8	EPICS-based control systems are widely used in experimental facilities. IOCs already developed for most of elements (motors, cameras, vacuum system components, RF system components), software is open source and accessible, few still in development
Archiving tool development	9	Technology proven in other facilities (TEX, SPARC_LAB, EuAPS).
Alarmhandler	9	Technology proven in other facilities (TEX, SPARC_LAB, EuAPS).
AI system	7	Technology demonstrated in other facilities (TEX, Daphne LINAC, SPARC_LAB).
Graphical User Interfaces	7	Technology based on widely used platforms