EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Chapter 19: Magnets and Power Supplies Lucia Sabbatini, Alessandro Vannozzi INFN - LNF

This project has received funding from the European Union's Horizon Europe research and innovation program under grant agreement No. 10107-773

IX TDR Review Committee Meeting June 16-18, 2025

Chapter index

1	Magnets and Power Supplies	9
1.1	Overview	9
1.2	Magnets for the injector 1	0
1.2.1	Gun solenoid 1	10
1.2.2	Gun quadrupole 1	
1.2.3	Gun steerer	
1.2.4	Focusing solenoids for accelerating sections	
1.2.5	Steerers between accelerating sections	
1.2.6	Quadrupoles	
1.2.7	Laser heater chicane magnets	
1.3	0	8
1.3.1	Steerers between X band accelerating sections	
1.3.2	Quadrupoles between X band accelerating sections	9
1.4	Bunch compressor magnets 2	20
1.4.1	Bunch compressor chicane dipoles 2	
1.4.2	Quadrupoles	
1.4.3	Spectrometer	21
1.5	Magnets for the plasma section 2	21
1.5.1	Beam Focusing Requirements	21
1.5.2	Tunable permanent magnet preliminary design 2	
1.5.3	Current status and next steps 2	24
1.6	Driver-witness separator 2	24
1.7	Magnets for the undulator line 2	28
1.7.1	Intraundulators quadrupoles	28
1.7.2	Intraundulators steerers	29
1.8	Dump dipole 3	0
1.9	Safety for magnets and power supplies 3	0
1.9.1	Magnets	0
1.9.2	Cables 3	1
1.9.3	Power converters	2

- The magnets are described following the accelerator path, from the gun to the dump.
- For each magnet, there is a brief description followed by a parameter table, especially those needed for defining the technical specifications.

Global Goals: 3D electromagnetic design of all magnets

Value

3943

3629

St.37

62.6

 4×10^{-5}

30

308

0.015

8.5

136

Units

G

G

T mm

mm

mm T² m

G

The goal is to develop a preliminary 3D design of all the machine's magnets, to ensure the feasibility of certain design choices, particularly with respect to longitudinal dimensions, and to prepare tables of technical specifications:

- For "standard" magnets, a preliminary design is sufficient to define the main parameters, leaving some construction choices to the supplier.
- For more critical magnets, a more detailed design review has been carried out, and the plan is to proceed to tender with stricter specifications.

Parameter	Units	Value
Energy	MeV	300
Deflection angle	mrad	4
Integrated field	T mm	4.0
Peak field	G	220
Magnetic length	mm	180
Yoke length	mm	70
Free aperture	mm x mm	70 x 70
Good field region	mm	± 10
Field quality	-	6x10 ⁻⁴
Conductor dimensions	mm x mm	1.0 x 2.2
Number of turns per coil	-	528
Current	А	3.2

Table 1.4: Main parameters of the steerers between accelerating sections.

Parameter

 B_{max} in ++ config

 B_{max} in +- config

Integrated field on axis, B_7

Integrated field quality

Good field region radius

Number of turns per coil

Minimum free aperture diameter

Focusing strength on axis in +- config

Yoke material

 \mathbf{B}_{max} on cathode

Achievements: Technological Readiness Level (Sub-Components)

Sub - systems	TRL	Comments
Magnets for the gun	9	Solenoid, quadrupole and steerers: already designed and successfully operating on the SPARC gun.
Accelerating sections solenoids	9	Experience gained with SABINA focusing solenoids. Only minor adjustment are required to decouple the mechanical support of the accelerating sections.
Steerers	9	Different types of steerers are foreseen in the machine (air-dominated or with iron yoke). The technology is well established.
Quadrupoles	8	Different types of quadrupoles are also included in the layout, including combined function quadrupoles with integrated steerers. The technology is well established.
Dipoles for chicanes	8	Standard dipoles with non-critical magnetic fields and parameters. May include magnetic shielding to reduce crosstalk. The technology is well established.
Magnets for the plasma section	6	PMQ designed based on similar implementations at other accelerators. A prototype, based on our specifications, to be built and tested.
Separator chicane	7	Four chicane dipoles and one septum magnet. The septum design is delicate, although the technology is well known.
Dump dipole	9	Optimization efforts are focused on minimizing the overall size.

Magnet Descriptions

Descriptions for a few magnets are still pending, specifically:

- Spectrometer
- Quadrupoles

Table data

- Magnetic and electrical parameters have already been defined for all magnets.
- Few parameters are still missing in the tables and need to be completed.

Magnet Parameters Table

• A comprehensive table with the main parameters of all magnets is to be inserted.

Power Supply Parameters Table

• A table summarizing the main parameters of all power supplies is to be inserted.

* * * * * * * Funded by the European Union

FOR THE TDR

Weeks 25–26 (Late June)

• Finalize the description of the remaining magnets.

Weeks 27 (Early July)

• Complete the missing data for all magnets.

Weeks 28 (Mid July)

Compile summary tables for magnets and power supplies.

NEXT STEPS

- Engineering design of selected (critical) magnets
- Tunable PMQ prototypes development

- In recent months, significant effort has been made to achieve the TDR objective.
- A few minor parts still need to be completed on the TDR, but overall, the objective is considered to be achieved.
- The work was carried out in constant collaboration with beam physics, taking into account the overall layout.